- 561.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2017年辽宁省锦州市中考数学试卷
一、选择题(本大题共8小题,每小题2分,共16分)
1.(2分)﹣的绝对值是( )
A. B.﹣ C. D.
2.(2分)联合国宽带委员会2016年9月15日发布了《2016年宽带状况》报告,报告显示,中国以7.21亿网民人数成为全球第一大互联网市场,7.21亿用科学记数法表示为( )
A.7.21×107 B.7.21×108 C.7.21×109 D.721×106
3.(2分)如图,一个由相同小正方体堆积而成的几何体,该几何体的主视图是( )
A. B. C. D.
4.(2分)关于x的一元二次方程x2+4kx﹣1=0根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.无法判断
5.(2分)一小区大门的栏杆如图所示,当栏杆抬起时,BA垂直于地面AE,CD平行于地面AE,则∠ABC+∠BCD的度数为( )
A.180° B.270° C.300° D.360°
6.(2分)在某校开展的“书香校园”读书活动中,学校为了解八年级学生的读书情况,随机调查了八年级50名学生每学期每人读书的册数,绘制统计表如下:
册数
0
1
2
3
4
人数
4
12
16
17
1
则这50个样本数据的众数和中位数分别是( )
A.17,16 B.3,2.5 C.2,3 D.3,2
7.(2分)如图,四边形ABCD是⊙O的内接四边形,AD与BC的延长线交于点E,BA与CD的延长线交于点F,∠DCE=80°,∠F=25°,则∠E的度数为( )
A.55° B.50° C.45° D.40°
8.(2分)如图,矩形OABC中,A(1,0),C(0,2),双曲线y=(0<k<2)的图象分别交AB,CB于点E,F,连接OE,OF,EF,S△OEF=2S△BEF,则k值为( )
A. B.1 C. D.
二、填空题(本大题共8小题,每小题3分,共24分)
9.(3分)分解因式:2x3﹣2xy2= .
10.(3分)计算:﹣6+tan60°= .
11.(3分)在一个不透明的布袋中,红色、黑色、白色的球共有20个,除颜色外,形状、大小、质地等完全相同,小明通过大量摸球试验后发现摸到红色、黑色球的频率分别稳定在10%和30%,则口袋中白色球的个数很可能是 个.
12.(3分)如图,E为▱ABCD的边AB延长线上的一点,且BE:AB=2:3,连接DE交BC于点F,则CF:AD= .
13.(3分)已知A,B两地相距10千米,上午9:00甲骑电动车从A地出发到B地,9:10乙开车从B地出发到A地,甲、乙两人距A地的距离y(千米)与甲所用的时间x(分)之间的关系如图所示,则乙到达A地的时间为 .
14.(3分)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①abc>0;②a=b;③a=4c﹣4;④方程ax2+bx+c=1有两个相等的实数根,其中正确的结论是 .(只填序号即可).
15.(3分)如图,正方形ABCD中,AB=2,E是CD中点,将正方形ABCD沿AM折叠,使点B的对应点F落在AE上,延长MF交CD于点N,则DN的长为 .
16.(3分)如图,Rt△OA0A1在平面直角坐标系内,∠OA0A1=90°,∠A0OA1=30°,以OA1为直角边向外作Rt△OA1A2,使∠OA1A2=90°,∠A1OA2=30°,以OA2为直角边向外作Rt△OA2A3,使∠OA2A3=90°,∠A2OA3=30°,按此方法进行下去,得到Rt△OA3A4,Rt△OA4A5,…,Rt△OA2016A2017,若点A0(1,0),则点A2017的横坐标为 .
三、解答题(本大题共2小题,共14分)
17.(6分)先化简,再求值:(x﹣)÷,其中x=2.
18.(8分)今年市委市政府积极推进创建“全国文明城市”工作,市创城办公室为了调查初中学生对“社会主义核心价值观”内容的了解程度(程度分为:“A﹣十分熟悉”,“B﹣了解较多”,“C﹣了解较少”,“D﹣不知道”),对我市一所中学的学生进行了随机抽样调查,根据调查结果绘制了两幅不完整的统计图如图,根据信息解答下列问题:
(1)本次抽样调查了多少名学生;
(2)补全条形统计图和扇形统计图;
(3)求扇形统计图中“D﹣不知道”所在的扇形圆心角的度数;
(4)若该中学共有2400名学生,请你估计这所中学的所有学生中,对“社会主义核心价值观”内容的了解程度为“十分熟悉”和“了解较多”的学生共有多少名?
四、解答题(本大题共2小题,每小题8分,共16分)
19.(8分)传统节日“端午节”的早晨,小文妈妈为小文准备了四个粽子作早点:一个枣馅粽,一个肉馅粽,两个花生馅粽,四个粽子除内部馅料不同外,其它一切均相同.
(1)小文吃前两个粽子刚好都是花生馅粽的概率为 ;
(2)若妈妈在早点中给小文再增加一个花生馅的粽子,则小文吃前两个粽子都是花生馅粽的可能性是否会增大?请说明理由.
20.(8分)某电子超市销售甲、乙两种型号的蓝牙音箱,每台进价分别为240元,140元,下表是近两周的销售情况:
销售时段
销售数量
销售收入
甲种型号
乙种型号
第一周
3台
7台
2160元
第二周
5台
14台
4020元
(1)求甲、乙两种型号蓝牙音箱的销售单价;
(2)若超市准备用不多于6000元的资金再采购这两种型号的蓝牙音箱共30台,求甲种型号的蓝牙音箱最多能采购多少台.
五、解答题(本大题共2小题,每小题8分,共16分)
21.(8分)超速行驶是一种十分危险的违法驾驶行为,在一条笔直的高速公路MN上,小型车限速为每小时120千米,设置在公路旁的超速监测点C,现测得一辆小型车在监测点C的南偏西30°方向的A处,7秒后,测得其在监测点C的南偏东45°方向的B处,已知BC=200米,B在A的北偏东75°方向,请问:这辆车超速了吗?通过计算说明理由.(参考数据:≈1.41,≈1.73)
22.(8分)已知:四边形OABC是菱形,以O为圆心作⊙O,与BC相切于点D,交OA于E,交OC于F,连接OD,DF.
(1)求证:AB是⊙O的切线;
(2)连接EF交OD于点G,若∠C=45°,求证:GF2=DG•OE.
六、解答题(本大题共1小题,共10分)
23.(10分)为解决消费者停车难的问题,某商场新建一小型轿车停车场,经测算,此停车场每天需固定支出的费用(包括设施维修费、管理人员工资等)为600元,为制定合理的收费标准,该商场对每天轿车停放辆次(每辆轿车每停放一次简称为“辆次”)与每辆轿车的收费情况进行调查,发现每辆次轿车的停车费定价不超过10元时,每天来此停放的轿车都为300辆次;若每辆次轿车的停车费定价超过10元,则每超过1元,每天来此停放的轿车就减少12辆次,设每辆次轿车的停车费x元(为便于结算,停车费x只取整数),此停车场的日净收入为y元(日净收入=每天共收停车费﹣每天固定的支出)回答下列问题:
(1)①当x≤10时,y与x的关系式为: ;
②当x>10时,y与x的关系式为: ;
(2)停车场能否实现3000元的日净收入?如能实现,求出每辆次轿车的停车费定价,如不能实现,请说明理由;
(3)该商场要求此停车场既要吸引顾客,使每天轿车停放的辆次较多,又要有最大的日净收入,按此要求,每辆次轿车的停车费定价应定为多少元?此时最大日净收入是多少元?
七、解答题(本大题共2小题,每小题12分,共24分)
24.(12分)已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD中点.
(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为 ,说明理由;
(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;
(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.
25.(12分)如图,抛物线y=x2+bx+c经过B(﹣1,0),D(﹣2,5)两点,与x轴另一交点为A,点H是线段AB上一动点,过点H的直线PQ⊥x轴,分别交直线AD、抛物线于点Q,P.
(1)求抛物线的解析式;
(2)是否存在点P,使∠APB=90°,若存在,求出点P的横坐标,若不存在,说明理由;
(3)连接BQ,一动点M从点B出发,沿线段BQ以每秒1个单位的速度运动到Q,再沿线段QD以每秒个单位的速度运动到D后停止,当点Q的坐标是多少时,点M在整个运动过程中用时t最少?
2017年辽宁省锦州市中考数学试卷
参考答案与试题解析
一、选择题(本大题共8小题,每小题2分,共16分)
1.(2分)﹣的绝对值是( )
A. B.﹣ C. D.
【考点】28:实数的性质.菁优网版权所有
【分析】根据负数的绝对值等于它的相反数可得答案.
【解答】解:﹣的绝对值是,
故选:C.
【点评】此题主要考查了实数的性质,关键是掌握绝对值的性质.
2.(2分)联合国宽带委员会2016年9月15日发布了《2016年宽带状况》报告,报告显示,中国以7.21亿网民人数成为全球第一大互联网市场,7.21亿用科学记数法表示为( )
A.7.21×107 B.7.21×108 C.7.21×109 D.721×106
【考点】1I:科学记数法—表示较大的数.菁优网版权所有
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
【解答】解:将7.21亿用科学记数法表示为:7.21×108.
故选:B.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.(2分)如图,一个由相同小正方体堆积而成的几何体,该几何体的主视图是( )
A. B. C. D.
【考点】U1:简单几何体的三视图.菁优网版权所有
【分析】从正面观察几何体看一看可观察到几个面,并依据各之间的位置关系进行判断即可.
【解答】解:该几何体的主视图为:
故选D.
【点评】本题主要考查的是几何体的三视图,熟练掌握三视图的概念是解题的关键.
4.(2分)关于x的一元二次方程x2+4kx﹣1=0根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.无法判断
【考点】AA:根的判别式.菁优网版权所有
【分析】根据方程的系数结合根的判别式,找出△=16k2+4>0,由此即可得出方程x2+4kx﹣1=0有两个不相等的实数根.
【解答】解:在方程x2+4kx﹣1=0,△=(4k)2﹣4×1×(﹣1)=16k2+4.
∵16k2+4>0,
∴方程x2+4kx﹣1=0有两个不相等的实数根.
故选A.
【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
5.(2分)一小区大门的栏杆如图所示,当栏杆抬起时,BA垂直于地面AE,CD平行于地面AE,则∠ABC+∠BCD的度数为( )
A.180° B.270° C.300° D.360°
【考点】JA:平行线的性质.菁优网版权所有
【分析】根据平行线的性质即可得到结论.
【解答】解:过B作BM∥AE,则CD∥BM∥AE.
∴∠BCD+∠1=180°;
又∵AB⊥AE,
∴AB⊥BM.
∴∠ABM=90°.
∴∠ABC+∠BCD=90°+180°=270°.
故选B.
【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
6.(2分)在某校开展的“书香校园”读书活动中,学校为了解八年级学生的读书情况,随机调查了八年级50名学生每学期每人读书的册数,绘制统计表如下:
册数
0
1
2
3
4
人数
4
12
16
17
1
则这50个样本数据的众数和中位数分别是( )
A.17,16 B.3,2.5 C.2,3 D.3,2
【考点】W5:众数;W4:中位数.菁优网版权所有
【分析】根据众数和中位数的定义解答.
【解答】解:3本出现17次,出现次数最多,众数为3;
按照从小到大排列,第25和26个数据为2本,中位数为2;
故选D.
【点评】本题考查了众数和中位数,熟悉它们的定义是解题的关键.
7.(2分)如图,四边形ABCD是⊙O的内接四边形,AD与BC的延长线交于点E,BA与CD的延长线交于点F,∠DCE=80°,∠F=25°,则∠E的度数为( )
A.55° B.50° C.45° D.40°
【考点】M6:圆内接四边形的性质;M5:圆周角定理.菁优网版权所有
【分析】根据三角形的外角的性质求出∠B,根据圆内接四边形的性质和三角形内角和定理计算即可.
【解答】解:∠B=∠DCE﹣∠F=55°,
∵四边形ABCD是⊙O的内接四边形,
∴∠EDC=∠B=55°,
∴∠E=180°﹣∠DCE﹣∠EDC=45°,
故选:C.
【点评】本题考查的是圆内接四边形的性质和三角形内角和定理,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.
8.(2分)如图,矩形OABC中,A(1,0),C(0,2),双曲线y=(0<k<
2)的图象分别交AB,CB于点E,F,连接OE,OF,EF,S△OEF=2S△BEF,则k值为( )
A. B.1 C. D.
【考点】G5:反比例函数系数k的几何意义.菁优网版权所有
【分析】设E点坐标为(1,m),则F点坐标为(,2),根据三角形面积公式得到S△BEF=(1﹣)(2﹣m),根据反比例函数k的几何意义得到S△OFC=S△OAE=m,由于S△OEF=S矩形ABCO﹣S△OCF﹣S△OEA﹣S△BEF,列方程即可得到结论.
【解答】解:∵四边形OABC是矩形,BA⊥OA,A(1,0),
∴设E点坐标为(1,m),则F点坐标为(,2),
则S△BEF=(1﹣)(2﹣m),S△OFC=S△OAE=m,
∴S△OEF=S矩形ABCO﹣S△OCF﹣S△OEA﹣S△BEF=2﹣m﹣m﹣(1﹣)(2﹣m),
∵S△OEF=2S△BEF,
∴2﹣m﹣m﹣(1﹣)(2﹣m)=2•(1﹣)(2﹣m),
整理得(m﹣2)2+m﹣2=0,解得m1=2(舍去),m2=,
∴E点坐标为(1,);
∴k=,
故选A.
【点评】本题考查了反比例函数k的几何意义和矩形的性质;会利用面积的和差计算不规则图形的面积.
二、填空题(本大题共8小题,每小题3分,共24分)
9.(3分)分解因式:2x3﹣2xy2= 2x(x+y)(x﹣y) .
【考点】55:提公因式法与公式法的综合运用.菁优网版权所有
【专题】11 :计算题;44 :因式分解.
【分析】原式提取公因式,再利用平方差公式分解即可.
【解答】解:原式=2x(x2﹣y2)=2x(x+y)(x﹣y),
故答案为:2x(x+y)(x﹣y)
【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
10.(3分)计算:﹣6+tan60°= 2 .
【考点】2C:实数的运算;T5:特殊角的三角函数值.菁优网版权所有
【专题】17 :推理填空题.
【分析】首先计算开方、乘法,然后从左向右依次计算,求出算式的值是多少即可.
【解答】解:﹣6+tan60°
=3﹣6×+
=3﹣2+
=2
故答案为:2.
【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.
11.(3分)在一个不透明的布袋中,红色、黑色、白色的球共有20个,除颜色外,形状、大小、质地等完全相同,小明通过大量摸球试验后发现摸到红色、黑色球的频率分别稳定在10%和30%,则口袋中白色球的个数很可能是 12 个.
【考点】X8:利用频率估计概率.菁优网版权所有
【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,先求得白球的频率,再乘以总球数求解.
【解答】解:白色球的个数是:20×(1﹣10%﹣30%)=20×60%=12(个);
故答案为:12.
【点评】此题主要考查了利用频率估计概率,解答此题的关键是要计算出口袋中白色球所占的比例,再计算其个数.
12.(3分)如图,E为▱ABCD的边AB延长线上的一点,且BE:AB=2:3,连接DE交BC于点F,则CF:AD= 3:5 .
【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.菁优网版权所有
【分析】先证明△CDF∽△BEF,所以,由平行四边形的性质可知,,从而可知=.
【解答】解:由题意可知:CD∥AE,CD=AB
∴△CDF∽△BEF
∴
∵
∴,
∴,
∵AD=BC,
∴=,
故答案为:3:5
【点评】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.
13.(3分)已知A,B两地相距10千米,上午9:00甲骑电动车从A地出发到B地,9:10乙开车从B地出发到A地,甲、乙两人距A地的距离y(千米)与甲所用的时间x(分)之间的关系如图所示,则乙到达A地的时间为 9:20 .
【考点】E6:函数的图象.菁优网版权所有
【分析】根据甲30分走完全程10千米,求出甲的速度,再由图中两图象的交点可知,两人在走了5千米时相遇,从而可求出甲此时用了15,则乙用了(15﹣10)分钟,所以乙的速度为:5÷5,求出乙走完全程需要时间,此时的时间应加上乙先前迟出发的10分,即可求出答案.
【解答】解:因为甲30分走完全程10千米,所以甲的速度是千米/分,
由图中看出两人在走了5千米时相遇,那么甲此时用了15分钟,则乙用了(15﹣10)分钟,
所以乙的速度为:5÷5=1千米/分,所以乙走完全程需要时间为:10÷1=10分,此时的时间应加上乙先前迟出发的10分,现在的时间为9点20.
故答案为9:20.
【点评】本题主要考查了函数图象的应用.做题过程中应根据实际情况和具体数据进行分析.本题应注意乙用的时间和具体时间之间的关联.
14.(3分)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①abc>0;②a=b;③a=4c﹣4;④方程ax2+bx+c=1有两个相等的实数根,其中正确的结论是 ③④ .(只填序号即可).
【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.菁优网版权所有
【分析】①根据抛物线的开口方向、对称轴位置和抛物线与y轴的交点坐标即可确定;
②根据抛物线的对称轴即可判定;
③根据抛物线的顶点坐标及b=﹣a即可判定;
④根据抛物线的最大值为1及二次函数与一元二次方程的关系即可判定.
【解答】解:①∵根据图示知,抛物线开口方向向下,
∴a<0.
由对称轴在y轴的右侧知b>0,
∵抛物线与y轴正半轴相交,
∴c>0,
∴abc<0.故①错误;
②∵抛物线的对称轴直线x=﹣=,
∴a=﹣b.
故②错误;
③∵该抛物线的顶点坐标为(,1),
∴1=,
∴b2﹣4ac=﹣4a.
∵b=﹣a,
∴a2﹣4ac=﹣4a,
∵a≠0,等式两边除以a,
得a﹣4c=﹣4,即a=4c﹣4.
故③正确;
④∵二次函数y=ax2+bx+c的最大值为1,即ax2+bx+c≤1,
∴方程ax2+bx+c=1有两个相等的实数根.
故④正确.
综上所述,正确的结论有③④.
故答案为:③④.
【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)的系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
15.(3分)如图,正方形ABCD中,AB=2,E是CD中点,将正方形ABCD沿AM折叠,使点B的对应点F落在AE上,延长MF交CD于点N,则DN的长为 2﹣4 .
【考点】PB:翻折变换(折叠问题);LE:正方形的性质.菁优网版权所有
【分析】根据正方形的性质得到AD=CD=2,∠D=∠B=90°,根据勾股定理得到AE==,根据折叠的性质得到AF=AB=2,∠AFN=∠B=90°,根据相似三角形的性质得到NE=5﹣2,于是得到结论.
【解答】解:∵在正方形ABCD中,AB=2,
∴AD=CD=2,∠D=∠B=90°,
∵E是CD中点,
∴DE=1,
∴AE==,
∵将正方形ABCD沿AM折叠,使点B的对应点F落在AE上,
∴AF=AB=2,∠AFN=∠B=90°,
∴EF=﹣2,∠NFE=90°,
∴∠D=∠NFE,
∵∠AED=∠NEF,
∴△ADE∽△NFE,
∴,即=,
∴NE=5﹣2,
∴DN=DE﹣NE=2﹣4,
故答案为:2﹣4.
【点评】本题考查了翻折变换﹣折叠问题,相似三角形的判定和性质,正方形的性质,勾股定理,正确的理解题意是解题的关键.
16.(3分)如图,Rt△OA0A1在平面直角坐标系内,∠OA0A1=90°,∠A0OA1=30°,以OA1为直角边向外作Rt△OA1A2,使∠OA1A2=90°,∠A1OA2=30°,以OA2为直角边向外作Rt△OA2A3,使∠OA2A3=90°,∠A2OA3=30°,按此方法进行下去,得到Rt△OA3A4,Rt△OA4A5,…,Rt△OA2016A2017,若点A0(1,0),则点A2017的横坐标为 ()2016 .
【考点】D2:规律型:点的坐标.菁优网版权所有
【分析】由含30°角的直角三角形的性质和勾股定理求出OA1、OA2,得出规律,即可得出结果.
【解答】解:∵∠OA0A1=90°,OA1=,∠A2OA1=30°,
同理:OA2=()2,…,OAn=()n,
∴OA2017的长度为 ()2017;
∵2017×30°÷360=168…1,
∴OA2017与OA1重合,
∴点A2017的横坐标为()2017÷=()2016.
故答案为:()2016.
【点评】本题考查了勾股定理、含30°角的直角三角形的性质;熟练掌握勾股定理,通过计算得出规律是解决问题的关键.
三、解答题(本大题共2小题,共14分)
17.(6分)先化简,再求值:(x﹣)÷,其中x=2.
【考点】6D:分式的化简求值.菁优网版权所有
【分析】根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
【解答】解:(x﹣)÷
=
=
=x2﹣1,
当x=2时,原式=.
【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
18.(8分)今年市委市政府积极推进创建“全国文明城市”工作,市创城办公室为了调查初中学生对“社会主义核心价值观”内容的了解程度(程度分为:“A﹣十分熟悉”,“B﹣了解较多”,“C﹣了解较少”,“D﹣不知道”),对我市一所中学的学生进行了随机抽样调查,根据调查结果绘制了两幅不完整的统计图如图,根据信息解答下列问题:
(1)本次抽样调查了多少名学生;
(2)补全条形统计图和扇形统计图;
(3)求扇形统计图中“D﹣不知道”所在的扇形圆心角的度数;
(4)若该中学共有2400名学生,请你估计这所中学的所有学生中,对“社会主义核心价值观”内容的了解程度为“十分熟悉”和“了解较多”的学生共有多少名?
【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.菁优网版权所有
【分析】(1)根据百分比=,计算即可;
(2)求出B组人数,C、D的百分比即可.
(3)根据圆心角=360°×百分比计算即可;
(4)利用样本估计总体的思想思考问题即可;
【解答】解:(1)本次抽样调查了36÷30%=120(名);
(2)B有120×45%=54(名),C占×100%=20%,D占×100%=5%,
(3)D所在的扇形圆心角的度数为360×5%=18°.
(4)2400×(45%+30%)=1800(名),
所以估计这所中学的所有学生中,对“社会主义核心价值观”内容的了解程度为“十分熟悉”和“了解较多”的学生共有1800名.
【点评】本题考查条形统计图、扇形统计图、不要估计总体的思想,解题的关键是熟练掌握基本概念,所以中考常考题型.
四、解答题(本大题共2小题,每小题8分,共16分)
19.(8分)传统节日“端午节”的早晨,小文妈妈为小文准备了四个粽子作早点:一个枣馅粽,一个肉馅粽,两个花生馅粽,四个粽子除内部馅料不同外,其它一切均相同.
(1)小文吃前两个粽子刚好都是花生馅粽的概率为 ;
(2)若妈妈在早点中给小文再增加一个花生馅的粽子,则小文吃前两个粽子都是花生馅粽的可能性是否会增大?请说明理由.
【考点】X6:列表法与树状图法.菁优网版权所有
【分析】(1)首先分别用A,B,C表示一个枣馅粽,一个肉馅粽,两个花生馅粽,然后根据题意画树状图,再由树状图求得所有等可能的结果与小文都是花生馅的情况,然后利用概率公式求解即可求得答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小文吃前两个都是花生的情况,再利用概率公式即可求得给小文再增加一个花生馅的粽子,比较大小即可.
【解答】解:(1)分别用A,B,C表示一个枣馅粽,一个肉馅粽,两个花生馅粽,
画树状图得:
∵共有12种等可能的结果,小文吃前两个粽子刚好都是花生馅的有2种情况,
∴小文吃前两个粽子刚好都是花生馅粽的概率:=,
故答案为:;
(2)会增大,
理由:分别用A,B,C表示一个枣馅粽,一个肉馅粽,三个花生馅粽,画树状图得:
∵共有20种等可能的结果,两个都是花生的有6种情况,
∴都是花生的概率为:=>;
∴给小文再增加一个花生馅的粽子,则小文吃前两个粽子都是花生馅粽的可能性会增大.
【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
20.(8分)某电子超市销售甲、乙两种型号的蓝牙音箱,每台进价分别为240元,140元,下表是近两周的销售情况:
销售时段
销售数量
销售收入
甲种型号
乙种型号
第一周
3台
7台
2160元
第二周
5台
14台
4020元
(1)求甲、乙两种型号蓝牙音箱的销售单价;
(2)若超市准备用不多于6000元的资金再采购这两种型号的蓝牙音箱共30台,求甲种型号的蓝牙音箱最多能采购多少台.
【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.菁优网版权所有
【分析】(1)设甲种型号蓝牙音箱的销售价为x元,乙种型号蓝牙音箱的销售单价为y元,由题意得等量关系:①3台甲的销售价+7台乙的销售价=2160元,②5台甲的销售价+14台乙的销售价=4020元,根据等量关系列出方程组,再解即可.
(2)设甲种型号的蓝牙音箱采购a台,由题意得不等关系:甲型的总进价+乙型的总进价≤6000元,根据不等关系,列出不等式,再解即可.
【解答】解:(1)设甲种型号蓝牙音箱的销售价为x元,乙种型号蓝牙音箱的销售单价为y元,依题意有
,
解得.
故甲种型号蓝牙音箱的销售价为300元,乙种型号蓝牙音箱的销售单价为180元.
(2)设甲种型号的蓝牙音箱采购a台,依题意有
240a+140(30﹣a)≤6000,
解得a≤18.
故甲种型号的蓝牙音箱最多能采购18台.
【点评】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.
五、解答题(本大题共2小题,每小题8分,共16分)
21.(8分)超速行驶是一种十分危险的违法驾驶行为,在一条笔直的高速公路MN上,小型车限速为每小时120千米,设置在公路旁的超速监测点C,现测得一辆小型车在监测点C的南偏西30°方向的A处,7秒后,测得其在监测点C的南偏东45°方向的B处,已知BC=200米,B在A的北偏东75°方向,请问:这辆车超速了吗?通过计算说明理由.(参考数据:≈1.41,≈1.73)
【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.菁优网版权所有
【分析】直接构造直角三角形,再利用特殊角的三角函数关系得出AB的长,进而求出汽车的速度,进而得出答案.
【解答】解:这辆汽车没有超速,
理由:过点D作DF⊥CB于点F,过点D作DE⊥AC于点E,
由题意可得:∠ACD=30°,∠DCB=45°,∠CDB=75°,则∠DAE=45°,∠CDF=45°,∠FDB=30°,
设BF=x,则DF=CF=x,
∵BC=200m,
∴x+x=200,
解得:x=100(﹣1),
故BF=100(﹣1)m,
则BD=200(﹣1)m,
DC=DF=××100(﹣1)=(300﹣100)m,
故DE=(150﹣50)m,
则AD=(150﹣50)=(300﹣100)m,
故AB=AD+BD=300﹣100+200(﹣1)=100(+1)≈173(m),
∴≈24.7(m/s),
∵每小时120千米=≈33.3(m/s),
∵24.7<33.3,
∴这辆车没有超速.
【点评】此题主要考查了解直角三角形的应用,正确构造直角三角形是解题关键.
22.(8分)已知:四边形OABC是菱形,以O为圆心作⊙
O,与BC相切于点D,交OA于E,交OC于F,连接OD,DF.
(1)求证:AB是⊙O的切线;
(2)连接EF交OD于点G,若∠C=45°,求证:GF2=DG•OE.
【考点】S9:相似三角形的判定与性质;L8:菱形的性质;ME:切线的判定与性质.菁优网版权所有
【分析】(1)过O作OH⊥AB,由菱形的性质可求得OH=OD,由切线的性质可知OD为圆O的半径,可得OH为圆O的半径,可证得结论;
(2)由条件可证明△DGF∽△DFO,再利用相似三角形的性质可证得结论.
【解答】证明:
(1)如图,过O作OH⊥AB,
∵四边形OABC为菱形,
∴AB=BC,
∵BC为⊙O的切线,
∴OD⊥BC,且OD为⊙O的半径,
∴AB•OH=BC•OD,
∴OH=OD,
∴AB为⊙O的切线;
(2)由(1)可知OD⊥CB,
∴AO⊥DO,
∴∠AOD=90°,
∴∠DFO=∠AOD=45°,
∵∠C=45°,且∠ODC=90°,
∴∠DOF=45°,
在△OGF中,∠DGF为△OGF的外角,
∴∠DGF=∠DOF+∠GFO=45°+∠GFO,
∵∠DFO=∠DFG+∠GFO=45°+∠GFO,
∴∠DGF=∠DFO,且∠GDF=∠FDO,
∴△DGF∽△DFO,
∴=,即DF•GF=DG•OF,
∵OF=OD=OE,
∴DF=GF,
∴GF2=DG•OE.
【点评】本题主要考查切线的判定和性质及相似三角形的判定,掌握切线的判定方法和相似三角形的判定方法是解题的关键,注意等积法的应用.
六、解答题(本大题共1小题,共10分)
23.(10分)为解决消费者停车难的问题,某商场新建一小型轿车停车场,经测算,此停车场每天需固定支出的费用(包括设施维修费、管理人员工资等)为600元,为制定合理的收费标准,该商场对每天轿车停放辆次(每辆轿车每停放一次简称为“辆次”)与每辆轿车的收费情况进行调查,发现每辆次轿车的停车费定价不超过10元时,每天来此停放的轿车都为300辆次;若每辆次轿车的停车费定价超过10元,则每超过1元,每天来此停放的轿车就减少12辆次,设每辆次轿车的停车费x元(为便于结算,停车费x只取整数),此停车场的日净收入为y元(日净收入=每天共收停车费﹣每天固定的支出)回答下列问题:
(1)①当x≤10时,y与x的关系式为: y=300x﹣600 ;
②当x>10时,y与x的关系式为: y=﹣12x2+420x﹣600 ;
(2)停车场能否实现3000元的日净收入?如能实现,求出每辆次轿车的停车费定价,如不能实现,请说明理由;
(3)该商场要求此停车场既要吸引顾客,使每天轿车停放的辆次较多,又要有最大的日净收入,按此要求,每辆次轿车的停车费定价应定为多少元?此时最大日净收入是多少元?
【考点】HE:二次函数的应用;AD:一元二次方程的应用.菁优网版权所有
【分析】(1)①根据“总利润=每辆次停车费用×辆次﹣总成本”列出函数解析式;
②根据“总利润=每辆次停车费用×辆次﹣总成本”可得函数解析式;
(2)根据停车场有3000元的日净收入,列出方程求解即可;
(3)根据(1)中函数解析式利用一次函数和二次函数性质求解可得.本题中要按照每辆次小车的停车费的变化,来分别讨论停车场的日净收入和每辆次小车的停车费之间的等量关系.然后根据不同的条件来判断出符合“使每天小车停放的辆次较多,又要有较大的日净收入”的取值.
【解答】解:(1)①由题意得:y=300x﹣600;
②由题意得:y=[300﹣12(x﹣10)]x﹣600,
即y=﹣12x2+420x﹣600;
(2)依题意有:﹣12x2+420x﹣600=3000,
解得x1=15,x2=20.
故停车场能实现3000元的日净收入,每辆次轿车的停车费定价是15元或20元;
(3)当x≤10时,停车300辆次,最大日净收入y=300×10﹣600=2400(元)
当x>10时,
y=﹣12x2+420x﹣600
=﹣12(x2﹣35x)﹣600
=﹣12(x﹣17.5)2+3075
∴当x=17.5时,y有最大值.但x只能取整数,
∴x取17或18.
显然,x取17时,小车停放辆次较多,此时最大日净收入为y=﹣12×0.25+3075=3072(元).
由上可得,每辆次轿车的停车费定价应定为17元,此时最大日净收入是3072元.
【点评】本题考查了二次函数的应用,一元二次方程的应用,根据题意列出函数关系式,再根据函数关系式解答是解题的关键.本要注意不同的条件下,函数的不同的变化,要根据题目给出的条件分别进行讨论.
七、解答题(本大题共2小题,每小题12分,共24分)
24.(12分)已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD中点.
(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为 等边三角形 ,说明理由;
(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;
(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.
【考点】RB:几何变换综合题.菁优网版权所有
【分析】(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;
(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;
(3)首先证明△GFH的周长=3GF=BD,求出BD的最大值和最小值即可解决问题;
【解答】解:(1)结论:△FGH是等边三角形.理由如下:
如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.
∵△ABC和△ADE均为等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴BD=CE,∠ADB=∠AEC,
∵EG=GB,EF=FD,
∴FG=BD,GF∥BD,
∵DF=EF,DH=HC,
∴FH=EC,FH∥EC,
∴FG=FH,
∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,
∴∠DMC+∠DAE=180°,
∴∠DME=120°,
∴∠BMC=60°
∴∠GFH=∠BOH=∠BMC=60°,
∴△GHF是等边三角形,
故答案为等边三角形.
(2)如图2中,连接AF、EC.
易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,
∴AF==,
在Rt△ABF中,BF==,
∴BD=CE=BF﹣DF=﹣1,
∴FH=EC=.
(3)(3)存在.理由如下.
由(1)可知,△GFH是等边三角形,GF=BD,
∴△GFH的周长=3GF=BD,
在△ABD中,AB=a,AD=b,
∴BD的最小值为a﹣b,最大值为a+b,
∴△FGH的周长最大值为(a+b),最小值为(a﹣b).
【点评】本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.
25.(12分)如图,抛物线y=x2+bx+c经过B(﹣1,0),D(﹣2,5)两点,与x轴另一交点为A,点H是线段AB上一动点,过点H的直线PQ⊥x轴,分别交直线AD、抛物线于点Q,P.
(1)求抛物线的解析式;
(2)是否存在点P,使∠APB=90°,若存在,求出点P的横坐标,若不存在,说明理由;
(3)连接BQ,一动点M从点B出发,沿线段BQ以每秒1个单位的速度运动到Q,再沿线段QD以每秒个单位的速度运动到D后停止,当点Q的坐标是多少时,点M在整个运动过程中用时t最少?
【考点】HF:二次函数综合题.菁优网版权所有
【分析】(1)把B(﹣1,0),D(﹣2,5)代入y=x2+bx+c,得出关于b、c的二元一次方程组,即可求出抛物线的解析式;
(2)根据抛物线解析式求出OA,设P(m,m2﹣2m﹣3),则﹣1≤m≤3,PH=﹣(m2﹣2m﹣3),BH=1+m,AH=3﹣m,证明△AHP∽△PHB,得出PH2=BH•AH,由此得出方程[﹣(m2﹣2m﹣3)]2=(1+m)(3﹣m),解方程即可;
(3)由题意,动点M运动的路径为折线BQ+QD,运动时间:t=BQ+DQ,如备用图,作辅助线,将BQ+DQ转化为BQ+QG;再由垂线段最短,得到垂线段BH与直线AD的交点即为所求的Q点.
【解答】解:(1)把B(﹣1,0),D(﹣2,5)代入y=x2+bx+c,
得,解得,
∴抛物线的解析式为:y=x2﹣2x﹣3;
(2)存在点P,使∠APB=90°.
当y=0时,即x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,
∴OB=1,OA=3.
设P(m,m2﹣2m﹣3),则﹣1≤m≤3,PH=﹣(m2﹣2m﹣3),BH=1+m,AH=3﹣m,
∵∠APB=90°,PH⊥AB,
∴∠PAH=∠BPH=90°﹣∠APH,∠AHP=∠PHB,
∴△AHP∽△PHB,
∴=,
∴PH2=BH•AH,
∴[﹣(m2﹣2m﹣3)]2=(1+m)(3﹣m),
解得m1=1+,m2=1﹣,
∴点P的横坐标为:1+或1﹣;
(3)如图,过点D作DN⊥x轴于点N,则DN=5,ON=2,AN=3+2=5,
∴tan∠DAB===1,
∴∠DAB=45°.
过点D作DK∥x轴,则∠KDQ=∠DAB=45°,DQ=QG.
由题意,动点M运动的路径为折线BQ+QD,运动时间:t=BQ+DQ,
∴t=BQ+QG,即运动的时间值等于折线BQ+QG的长度值.
由垂线段最短可知,折线BQ+QG的长度的最小值为DK与x轴之间的垂线段.
过点B作BH⊥DK于点H,则t最小=BH,BH与直线AD的交点,即为所求之Q点.
∵A(3,0),D(﹣2,5),
∴直线AD的解析式为:y=﹣x+3,
∵B点横坐标为﹣1,
∴y=1+3=4,
∴Q(﹣1,4).
【点评】此题是二次函数综合题,主要考查了待定系数法求抛物线与直线的解析式,相似三角形的判定与性质,垂线段最短的性质,函数图象上点的坐标特征等知识.利用数形结合与方程思想是解题的关键.