- 237.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2014年毕节市初中毕业省学业(升学)统一考试试卷
数 学
(满分150分,考试时间120分钟)
注意事项:
1. 答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置.
2. 答题时,卷Ⅰ必须使用2B铅笔,卷Ⅱ必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置,字体工整、笔迹清楚.
3. 所有题目必须在答题卡上作答,在试卷上答题无效.
4.本试卷共6页,满分150分,考试用时120分钟.
5.考试结束后,将试卷和答题卡一并交回.
卷Ⅰ
一、选择题(本大题15个小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)
1.(2014贵州省毕节市,1,3分)计算-的结果是( )
A.9 B.-9 C.6 D.-6
【答案】B.
2.(2014贵州省毕节市,2,3分)如图是某一几何体的三视图,则该几何体是( )
A.三棱柱 B.长方体 C. 圆柱 D.圆锥
主视图
左视图
俯视图
(第2题图)
【答案】C.
3.(2014贵州省毕节市,3,3分)下列运算正确的是( )
A. π-3.14 B. C. D.
【答案】D.
4.(2014贵州省毕节市,4,3分)下列因式分解正确的是( )
A.-2=2(x+1)(x-1) B.
C. D.
【答案】A.
5.(2014贵州省毕节市,5,3分)下列叙述正确的是( )
A.方差越大,说明数据就越稳定
B.在不等式两边同乘或同除以一个不为0的数时,不等号的方向不变
C.不在同一直线上的三点确定一个圆
D.两边及其一边的对角对应相等的两个三角形全等
【答案】C.
6.(2014贵州省毕节市,6,3分)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是( )
A.6 B.5 C.4 D.3
(第6题图)
【答案】B.
7.(2014贵州省毕节市,7,3分)我市5月的某一周每天的最高气温(单位:ºC)统计如下:19,20,24,22,24,26,27.则这组数据的中位数与中数分别是( )
A.23,24 B.24,22 C.24,24 D.22,24
【答案】C.
8.(2014贵州省毕节市,8,3分)如图所示,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,菱形ABCD的周长为28,则OH的长等于( )
A.3.5 B.4 C.7 D.14
(第8题图)
【答案】A.
9.(2014贵州省毕节市,9,3分)
如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )
A.13 B.14 C.15 D.16
(第9题图)
【答案】B.
10.(2014贵州省毕节市,10,3分)若分式的值为0,则x的值为( )
A.0 B.1 C.-1 D.
【答案】C.
11.(2014贵州省毕节市,11,3分)抛物线,的共同性质是( )
A.开口向上 B.对称轴是y轴
C. 都有最高点 D.y随x的增大而增大
【答案】B.
12.(2014贵州省毕节市,12,3分)如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,则DC的长等于( )
A. B. C. D.
(第12题图)
【答案】A.
13.(2014贵州省毕节市,13,3分)若与可以合并成一项,则的值是( )
A.2 B.0 C.-1 D.1
【答案】D.
14.(2014贵州省毕节市,14,3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为( )
A.x≥ B.x≤3 C.x≤ D. x≥3
A
O
y
x
(第14题图)
【答案】A.
15.(2014贵州省毕节市,15,3分)如图是以△ABC的边为直径的半圆O,点C恰在半圆上,过C作CD⊥AB交AB与D,已知cos∠ACD=,BC=4,则AC的长为( )
A.1 B. C.3 D.
(第15题图)
【答案】D.
卷Ⅱ
二、填空题(本大题共5个小题,每小题5分,共25分)
16.(2014贵州省毕节市,16,5分)1纳米=米,将0.00305纳米用科学计数法表示为______米.
【答案】3.05×10-12.
17.(2014贵州省毕节市,17,5分)不等式组的解集为______.
【答案】-4≤x≤1.
18.(2014贵州省毕节市,18,5分)观察下列一组数:,,,,……,它们是按一定规律排列的,那么这一组数据的第n个数是______.
【答案】.
19.(2014贵州省毕节市,19,5分)将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计).则这个平行四边形的一个最小内角为______度.
(第19题图)
【答案】30.
20.(2014贵州省毕节市,20,5分)如图,Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为______.
(第20题图)
【答案】.
三、解答及证明(本大题共7个小题,各题分值见题号后,共80分)
21.(2014贵州省毕节市,21,4分)计算:
【答案】原式=.
(2014贵州省毕节市,21,4分)先化简,再求值:,其中a2+a-2=0.
【答案】原式=
由a2+a-2=0解得:a=-2或1.
当a=1时,原式无意义.所以a=-2.
当a=-2时,原式=
23.(2014贵州省毕节市,23,10分)在下列的网格图中.每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;
(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;
(3)根据(2)中的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.
A
B
C
(第23题图)
【答案】(1)如图所示的△AB1C1;
(2)如图所示的直角坐标系,点A的坐标为(0,1),点C的坐标为(-3,1);
(3)如图所示的△A2B2C2,点B2的坐标为(3,-5),点C2的坐标为(3,-1).
A
B
C
x
y
B1
C1
C2
B2
A2
24.(2014贵州省毕节市,24,12分)我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球.学生可根据自己的爱好选修一门.学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).
(1)请你求出该班的总人数,并补全频数分布直方图;
(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.
(第24题图)
【答案】(1)12÷24%=50,所以该班的总人数为50人.
“E”对应的人数为50×10%=5,A对应的人数为50-7-12-9-5=17.
补全频数分布直方图,如图所示:
(2)选出的2人情况列表如下:
第一个人选修
第二个人选修
A
B
B
C
A
AB
AB
AC
B
AB
BB
BC
B
AB
BB
BC
C
AC
BC
BC
所以,选出的2人恰好1人选修篮球,1人选修足球的概率P(AB)=.
或者画树状图如下:
可见,P(AB)=.
25.(2014贵州省毕节市,25,12分)某工厂生产的某种产品按质量分为10个档次.第1档次(最低档次)的产品一天能生产95件,每件利润6元.
每提高一个档次,每件利润增加2元,但一天产量减少5件.
(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;
(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.
【答案】(1)y=[6+2(x-1)]×[95-5(x-1)],
整理,得y=-10x2+180x+400.
(2)由-10x2+180x+400=1120,化简,得x2-18x+72=0.
配方,得(x-9)2=9,解得x1=6,x2=12(不合题意,舍去).
所以,该产品为第6档次的产品.
26.(2014贵州省毕节市,26,14分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于D点,连接CD.
(1)求证:∠A=∠BCD;
(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?请说明理由.
(第26题图)
【答案】(1)证明:∵AC为⊙O的直径,
∴∠ACD=90°.∴∠A=90°-∠ACD.
又∠ACB=90°,∴∠BCD =90°-∠ACD.
∴∠A=∠BCD.
(2)点M为线段BC的中点时,直线DM与⊙O相切.理由如下:
连接OD,作DM⊥OD,交BC于点M,则DM为⊙O的切线.
∵∠ACB=90°,∴∠B=90°-∠A,BC为⊙O的切线.
由切线长定理,得DM=CM.∴∠MDC=∠BCD.
由(1)可知:∠A=∠BCD,CD⊥AB.
∴∠BDM=90°-∠MDC=90°-∠BCD.
∴∠B=∠BDM.∴DM=BM.∴CM=BM.
即点M为线段BC的中点.
27.(2014贵州省毕节市,27,14分)如图,抛物线(a≠0)的顶点为A(-1,-1),与x轴的一个交点M(1,0).C为x轴上一点,且∠CAO=90°,线段AC的延长线交抛物线于B点.另有点F(-1,0).
(1)求抛物线的解析式;
(2)求直线AC的解析式及B点坐标;
(3)过点B作x轴的垂线,交x轴于Q点,交过点D(0,-2)且垂直于y轴的直线于E点.若P是△BEF的边EF上的任意一点,是否存在BP⊥EF?若存在,求出P点的坐标;若不存在,请说明理由.
1
M
O
F
C
Q
B
E
A
D
-1
-2
-1
x
y
(第27题图)
【答案】(1)∵抛物线的顶点为A(-1,-1),∴可设其解析式为y=a(x+1)2-1.
又∵抛物线过M(1,0),∴a(1+1)2-1=0,解得a=.
∴抛物线的解析式为y=(x+1)2-1,即y=.
(2)连接AF,则由A(-1,-1),F(-1,0)可知OF=AF=1,AF⊥CO.
∴△AOF为等腰直角三角形,∠AOC=45°.
∵∠CAO=90°,∴△AOC为等腰直角三角形,OC=2OF=2.
∴点C坐标为(-2,0).
设直线AC的解析式为y=kx+b,则解得
∴直线AC的解析式为y=-x-2.
由=-x-2,解得x1=-1,x2=-5.
把x的值分别代入y=-x-2,解得y1=-1,y2=3.
∴直线AC与抛物线的两个交点坐标分别为(-1,-1),(-5,3).
其中,(-1,-1)为点A坐标,故点B坐标为(-5,3).
1
M
O
F
C
Q
B
E
A
D
-1
-2
-1
x
y
P
M
N
(3)由各点坐标可知,BQ=3,EQ=2,OQ=5,OF=1,
∴BE= BQ+EQ=5,QF= OQ-OF=4.
在Rt△BQF中,BF=,∴BF= BE.
要使BP⊥EF,则需点P为EF中点,分别过点F、P作DE的垂线,垂足分别为M,N,
则FM=QE=2,EM=FQ=4,PN为△EFM的中位线,
∴EN=EM=2,PN=FM=1.
∴P点的坐标为(-(5-2),-(2-1)),即(-3,-1).