- 740.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题复习·数量和位置变化(1)
班级 姓名 学号
一.选择题
1.函数的取值范围是( )
A.全体实数 B.x≠0 C.x>0 D.x≥0
2.若点A(m,n)在第三象限,则点B(|m|,n)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.把抛物线向上平移5个单位,所得抛物线的解析式为( )
A. B. C. D.
4.在平面直角坐标系中,已知点A(0,2),B(,0),C(0,),D(,0),则以这四个点为顶点的四边形ABCD是( )
A.矩形 B.菱形 C.正方形 D.梯形
5. 在平面直角坐标系中,已知线段的两个端点分别是,将线段平移后得到线段,若点的坐标为,则点的坐标为( )
A. B. C. D.
6.函数y=+x﹣2的自变量x的取值范围是( )
A. x≥2 B. x>2 C. x≠2 D. x≤2
7.在平面直角坐标系中,先将抛物线关于轴作轴对称变换,再将所得的抛物线关于轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( )
A. B.
C. D.
8.某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h
)之间的关系如图所示,则下列结论正确的是( )
(A)汽车在高速公路上的行驶速度为100km/h
(B)乡村公路总长为90km
(C)汽车在乡村公路上的行驶速度为60km/h
(D)该记者在出发后4.5h到达采访地
9.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )
10.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:
①出发1小时时,甲、乙在途中相遇;
②出发1.5小时时,乙比甲多行驶了60千米;
③出发3小时时,甲、乙同时到达终点;
④甲的速度是乙速度的一半.
其中,正确结论的个数是( )
A. 4 B. 3 C. 2 D. 1
二.填空题
11.若正比例函数y =kx与y=2x的图象关于x轴对称,则k的等于
12.已知抛物线,若点P(,5)与点Q关于该抛物线的对称轴对称,则点Q的坐标是 .
13.已知关于x的函数同时满足下列三个条件:
①函数的图象不经过第二象限;
②当时,对应的函数值;
③当时,函数值y随x的增大而增大.
你认为符合要求的函数的解析式可以是: (写出一个即可).
14.如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为 .
15.如图,△ABC的三个顶点都在方格纸的格点上,其中点A的坐标是.现将△ABC绕点A顺时针旋转90°,则旋转后点C的坐标是 .
16.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,),动点P从点A出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2015秒时,点P的坐标为 .
17.如图,矩形ABCD中,OA在x轴上,OC在y轴上,且OA=2,AB=5,把△ABC沿着AC对折得到△AB′C,AB′交y轴于D点,则B′
点的坐标为 .
18.已知正方形ABCD的边长是1,E为CD边的中点,P为正方形ABCD边上的一个动点,动点P从A点出发,沿A→B→C→E运动,到达点E.若点P经过的路程为自变量x,△APE的面积为函数y,则当y=时,x的值等于 .
三.解答题
19.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:
售价(元/件)
100
110
120
130
…
月销量(件)
200
180
160
140
…
已知该运动服的进价为每件60元,设售价为x元.
(1)请用含x的式子表示:
①销售该运动服每件的利润是 元;②月销量是 .件;(直接填写结果)
(2)设销量该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?
20.在直角坐标平面内,二次函数图象的顶点为,且过点.
(1)求该二次函数的解析式;
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与轴的另一个交点的坐标.
21.已知关于的方程的两个实数根为α、β,且α≤β。
(1)试用含有α、β的代数式表示;
(2)求证:α≤1≤β;
(3)若以α、β为坐标的点M(α、β)在△ABC的三条边上运动,且△ABC顶点的坐标分别为A(1,2),B(,1),C(1,1),问是否存在点M,使,若存在,求出点M的坐标;若不存在,请说明理由。
22.已知一个直角三角形纸片,其中.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边交于点,与边交于点.
(Ⅰ)若折叠后使点与点重合,求点的坐标;
(Ⅱ)若折叠后点落在边上的点为,设,,试写出关于的函数解析式,并确定的取值范围;
(Ⅲ)若折叠后点落在边上的点为,且使,求此时点的坐标.
23.如图,▱ABCD放置在平面直角坐标系中,已知点A(2,0),B(6,0),D(0,3),反比例函数的图象经过点C.
(1)求反比例函数的解析式;
(2)将▱ABCD向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求线段AA′的长及点E的坐标.
24.如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.
(1)求抛物线的解析式;
(2)求证:ED是⊙P的切线;
(3)若将△ADE绕点D逆时针旋转90°,E点的对应点E′会落在抛物线y=ax2+bx+c上吗?请说明理由;
(4)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
答案详解
一.选择题
故选A。
4.在平面直角坐标系中,已知点A(0,2),B(,0),C(0,),D(,0),则以这四个点为顶点的四边形ABCD是( )
A.矩形 B.菱形 C.正方形 D.梯形
解答:解:画出草图,根据特殊四边形的判定方法判断:在平面直角坐标系中画出图后,可发现这个四边形的对角线互相平分,先判断为平行四边形,对角线还垂直,那么这样的平行四边形应是菱形。故选B。
5. 在平面直角坐标系中,已知线段的两个端点分别是,将线段平移后得到线段,若点的坐标为,则点的坐标为( )
A. B. C. D.
解答:解:直接利用平移中点的变化规律求解即可:
由A点平移前后的横坐标分别为-4、-2,可得A点向右平移了2个单位,
由A点平移前后的纵坐标分别为-1、2,可得A点向上平移了3个单位,
由此得线段AB的平移的过程是:再向右平移2个单位,向上平移3个单位,
所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4)。故选B。
6.函数y=+x﹣2的自变量x的取值范围是( )
A. x≥2 B. x>2 C. x≠2 D. x≤2
解答: 解:根据题意得:x﹣2≥0且x﹣2≠0,
解得:x>2.
故选:B.
7.在平面直角坐标系中,先将抛物线关于轴作轴对称变换,再将所得的抛物线关于轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( )
A. B.
C. D.
解答:解:根据平面直角坐标系中,二次函数关于轴、轴轴对称的特点得出答案:
∵,
∴抛物线的顶点坐标为()。
当将抛物线作关于轴对称变换时,顶点的横坐标不变,纵坐标互为相反数,即新抛物线顶点坐标为()。同时抛物线的开口变为向下,即二次项系数为负。因此变换后的函数式为。
当再将所得的抛物线作关于轴对称变换时,顶点的纵坐标不变,横坐标互为相反数,即新抛物线顶点坐标为()。同时抛物线的开口方向不变。因此变换后的函数式为,即。故选C。
8.某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是( )
(A)汽车在高速公路上的行驶速度为100km/h
(B)乡村公路总长为90km
(C)汽车在乡村公路上的行驶速度为60km/h
(D)该记者在出发后4.5h到达采访地
解答:解:根据函数的图象和已知条件对每一项分别进行分析,
A、汽车在高速公路上的行驶速度为180÷2=90(km/h),故本选项错误;
B、乡村公路总长为360-180=180(km),故本选项错误;
C、汽车在乡村公路上的行驶速度为180÷3=60(km/h),故本选项正确;
D、该记者在出发后5h到达采访地,故本选项错误。
故选C。
9.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )
10.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:
①出发1小时时,甲、乙在途中相遇;
②出发1.5小时时,乙比甲多行驶了60千米;
③出发3小时时,甲、乙同时到达终点;
④甲的速度是乙速度的一半.
其中,正确结论的个数是( )
A. 4 B. 3 C. 2 D. 1
解答: 解:由图象可得:出发1小时,甲、乙在途中相遇,故①正确;
甲骑摩托车的速度为:120÷3=40(千米/小时),设乙开汽车的速度为a千米/小时,
则,
解得:a=80,
∴乙开汽车的速度为80千米/小时,
∴甲的速度是乙速度的一半,故④正确;
∴出发1.5小时,乙比甲多行驶了:1.5×(80﹣40)=60(千米),故②正确;
乙到达终点所用的时间为1.5小时,甲得到终点所用的时间为3小时,故③错误;
∴正确的有3个,
故选:B.
二.填空题
11.若正比例函数y =kx与y=2x的图象关于x轴对称,则k的等于
解答:解:根据关于x轴对称的点的坐标特征:横坐标不变,纵坐标互为相反数.则两个解析式的k值应互为相反数, 即k=-2。
12.已知抛物线,若点P(,5)与点Q关于该抛物线的对称轴对称,则点Q的坐标是 .
解答:解:根据抛物线解析式求出抛物线对称轴为x,再根据图象得出点P(-2,5)关于对称轴对称点Q:两点的纵坐标不变,两点横坐标到对称轴的距离相等,都为3,得到Q点坐标为(4,5)。
13.已知关于x的函数同时满足下列三个条件:
①函数的图象不经过第二象限;
②当时,对应的函数值;
③当时,函数值y随x的增大而增大.
你认为符合要求的函数的解析式可以是: (写出一个即可).
解答:解:此函数可以是一次函数y=k(x-2)+b(k>0,b≤0);
也可为二次函数y=a(x-2)2+b(a<0,b≤0)。
如y= x-2,y= 2(x-2)-1=2 x-5,y=-(x-2)2=-x2+4x-4等等,答案不唯一。
14.如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为 .
解答: 解:由题意可知,点A移动到点A′位置时,纵坐标不变,
∴点A′的纵坐标为6,
﹣x=6,解得x=﹣8,
∴△OAB沿x轴向左平移得到△O′A′B′位置,移动了8个单位,
∴点B与其对应点B′间的距离为8,
故答案为:8.
15.如图,△ABC的三个顶点都在方格纸的格点上,其中点A的坐标是.现将△ABC绕点A顺时针旋转90°,则旋转后点C的坐标是 .
解答: 解:如答图,旋转后点C的坐标C1是.
∴沿A→B→C→D→A所需的时间=4×4=16秒.
∵=125…15,
∴移动到第2015秒时,点P恰好运动到AD的中点,
解答:解:作B′E⊥x轴,
易证AD=CD,
设OD=x,AD=5﹣x,
在Rt△AOD中,根据勾股定理列方程得:22+x2=(5﹣x)2,
解得:x=2.1,
∴AD=2.9,
∵OD∥B′E,
∴△ADO∽△AB′E,
18.已知正方形ABCD的边长是1,E为CD边的中点,P为正方形ABCD边上的一个动点,动点P从A点出发,沿A→B→C→E运动,到达点E.若点P经过的路程为自变量x,△APE的面积为函数y,则当y=时,x的值等于 .
解答: 解:根据P点的位置,由三角形面积公式表达出分段函数,在分段函数中,已知y的值,求x:
当点P在AB边上时,y=•x•1=,解得x=。
当点P在BC边上时,y=•(1+)•1-•(x-1)•1-••(2-x)=,解得x=。
当点P在CE上时,y=•(2-x)•1=,解得x=。它不在CE上,舍去。
∴当y=时,x的值等于或。
三.解答题
19.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:
售价(元/件)
100
110
120
130
…
月销量(件)
200
180
160
140
…
已知该运动服的进价为每件60元,设售价为x元.
(1)请用含x的式子表示:
①销售该运动服每件的利润是 元;②月销量是 .件;(直接填写结果)
(2)设销量该运动服的月利润为y
元,那么售价为多少时,当月的利润最大,最大利润是多少?
【答案】解:(1)①;
②.
(2)依题意可得:.
当x=130时,y有最大值980.
∴售价为每件130元时,当月的利润最大,为9800元.
20.在直角坐标平面内,二次函数图象的顶点为,且过点.
(1)求该二次函数的解析式;
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与轴的另一个交点的坐标.
【答案】解:(1)设二次函数解析式为,
∴二次函数图象过点,∴,得。
∴二次函数解析式为,即。
轴的另一个交点坐标为。
21.已知关于的方程的两个实数根为α、β,且α≤β。
(1)试用含有α、β的代数式表示;
(2)求证:α≤1≤β;
(3)若以α、β为坐标的点M(α、β)在△ABC的三条边上运动,且△ABC顶点的坐标分别为A(1,2),B(,1),C(1,1),问是否存在点M,使,若存在,求出点M的坐标;若不存在,请说明理由。
【答案】解:(1)∵α、β为方程的两个实数根,
∴判别式△=,且α+β=,αβ=。
∴=αβ,=α+β--1=α+β-αβ-1。
(2)∵(1-α)(1-β)=1-(α+β)+αβ=-≤0(≥0),又α≤β,
∴α≤1≤β。
(3)若使成立,只需α+β=。
①当点M(α,β)在BC边上运动时,由B(,1),C(1,1),
得≤α≤1,β=1,而α=-β=-1=>1,
故在BC边上存在满足条件的点M,其坐标为(,1)。
②当点M(α,β)在AC边上运动时,由A(1,2),C(1,1),
得α=1,1≤β≤2,此时β=-α=-1=。又因为1<<2,
故在AC边上存在满足条件的点M,其坐标为(1,)。
③当点M(α,β)在AB边上运动时,由A(1,2),B(, 1),得≤α≤1,1≤β≤2。
设AB所在直线为:,由A(1,2),B(,1),
得,解得。∴AB所在直线为:。
∴由点M(α,β)在AB边上运动,得。
又α+β=,得。
又∵,∴在线段AB上。
故在AB边上存在满足条件的点M,其坐标为。
综上所述,当点M(α,β)在△ABC的三条边上运动时,存在点(,1),(1,)和点,使成立。
22.已知一个直角三角形纸片,其中.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边交于点,与边交于点.
(Ⅰ)若折叠后使点与点重合,求点的坐标;
(Ⅱ)若折叠后点落在边上的点为,设,,试写出关于的函数解析式,并确定的取值范围;
(Ⅲ)若折叠后点落在边上的点为,且使,求此时点的坐标.
【答案】解:(Ⅰ)如图①,折叠后点与点重合,
则。
设点的坐标为,
则。
∴。
在中,由勾股定理,得,
即,解得。
∴点的坐标为。
(Ⅱ)如图②,折叠后点落在边上的点为,
则。
由题设,,
则。
在中,由勾股定理,得,即,
∴。
由点在边上,有,
∴解析式()为所求。
∵当时,随的增大而减小,∴的取值范围为。
(Ⅲ)如图③,折叠后点落在边上的点为,且,
则。
又∵,∴。
∴。∴。
∴,得。
在中,设,则。
由(Ⅱ)的结论,得,即,解得。
∵,∴。
∴点的坐标为。
23.如图,▱ABCD放置在平面直角坐标系中,已知点A(2,0),B(6,0),D(0,3),反比例函数的图象经过点C.
(1)求反比例函数的解析式;
(2)将▱ABCD向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求线段AA′的长及点E的坐标.
解答:解:(1)∵▱ABCD中,A(2,0),B(6,0),D(0,3),
∴AB=CD=4,DC∥AB,
∴C(4,3),
设反比例解析式为y=,把C坐标代入得:k=12,
则反比例解析式为y=;
(2)∵B(6,0),
∴把x=6代入反比例解析式得:y=2,即B′(6,2),
∴平行四边形ABCD向上平移2个单位,即AA′=2,
∴D′(0,5),
24.如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.
(1)求抛物线的解析式;
(2)求证:ED是⊙P的切线;
(3)若将△ADE绕点D逆时针旋转90°,E点的对应点E′会落在抛物线y=ax2+bx+c上吗?请说明理由;
(4)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
解答: 解:(1)∵C(2,0),BC=6,
∴B(﹣4,0),
在Rt△OCD中,∵tan∠OCD=,
而∠DAE=∠DCB,
∴△AED∽△COD,
∴∠ADE=∠CDO,
而∠ADE+∠ODE=90°
∴∠CDO+∠ODE=90°,
∴CD⊥DE,
∵∠DOC=90°,
∴CD为⊙P的直径,
∴ED是⊙P的切线;
(3)E点的对应点E′不会落在抛物线y=ax2+bx+c上.理由如下:
∵△AED∽△COD,
∵∠CDE=90°,DE>DC,
∴△ADE绕点D逆时针旋转90°,E点的对应点E′在射线DC上,
而点C、D在抛物线上,
∴点E′不能在抛物线上;
(4)存在.
如图2,
当BM为平行四边形BDMN的对角线时,点D向左平移4个单位,