- 598.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
中考数学压轴题汇编(1)
1、如图,抛物线交轴于A、B两点,交轴于点C,点P是它的
顶点,点A的横坐标是3,点B的横坐标是1.
(1)求、的值; (2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线
PC的位置关系,并说明理由.(参考数:,,)
2、(湖北荆门)如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.
(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;
(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;
图2
图1
(3)在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.
(第25题图)
A
x
y
B
C
O
3.(本题满分10分)如图,在平面直角坐标系中,抛物线=-++
经过A(0,-4)、B(,0)、 C(,0)三点,且-=5.
(1)求、的值;(4分)
(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;(3分)
(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线
的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?
若不存在,请说明理由.(3分)
4. (河池市 本小题满分12分)
如图11,在直角梯形中,∥,,点为坐标原点,点在轴的正半轴上,对角线,相交于点,,.
(1)线段的长为 ,点的坐标为 ;
M
C
B
O
A
(2)求△的面积;
(3)求过,,三点的抛物线的解析式;
(4)若点在(3)的抛物线的对称轴上,点为该
抛物线上的点,且以,,,四点为顶点的四边形
为平行四边形,求点的坐标.
5、(2010•重庆)已知:如图(1),在平面直角坐标xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A在x轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.
(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;
(2)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;
(3)如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.
1、如图,抛物线交轴于A、B两点,交轴于点C,点P是它的
顶点,点A的横坐标是3,点B的横坐标是1.
(1)求、的值;
(2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线
PC的位置关系,并说明理由.(参考数:,,)
解: (1)由已知条件可知: 抛物线经过A(-3,0)、B(1,0)两点.
∴ 解得 . (2) ∵, ∴ P(-1,-2),C. 设直线PC的解析式是,则 解得.
∴ 直线PC的解析式是. 说明:只要求对,不写最后一步,不扣分.
(3) 如图,过点A作AE⊥PC,垂足为E.
设直线PC与轴交于点D,则点D的坐标为(3,0).在Rt△OCD中,∵ OC=,,
∴ . …………8分
∵ OA=3,,∴AD=6. …………9分∵ ∠COD=∠AED=90o,∠CDO公用,
∴ △COD∽△AED.∴ , 即. ∴ . ∵ ,
∴ 以点A为圆心、直径为5的圆与直线PC相离. ………12分
2、(湖北荆门)如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.
(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;
(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;
图2
图1
(3)在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.
解:(1)由已知PB平分∠APD,PE平分∠OPF,且PD、PF重合,则∠BPE=90°.∴∠OPE+∠APB=90°.又∠APB+∠ABP=90°,∴∠OPE=∠PBA.
∴Rt△POE∽Rt△BPA.…………………………………………………………2分
∴.即.∴y=(0<x<4).
且当x=2时,y有最大值.…………………………………………………4分
(2)由已知,△PAB、△POE均为等腰三角形,可得P(1,0),E(0,1),B(4,3).……6分
设过此三点的抛物线为y=ax2+bx+c,则∴
A
x
y
B
C
O
y=.… (3)由(2)知∠EPB=90°,即点Q与点B重合时满足条件.……………………9分
直线PB为y=x-1,与y轴交于点(0,-1).将PB向上平移2个单位则过点E(0,1),
∴该直线为y=x+1.…由得∴Q(5,6).
故该抛物线上存在两点Q(4,3)、(5,6)满足条件. 12
3.(本题满分10分)如图,在平面直角坐标系中,抛物线=-++
经过A(0,-4)、B(,0)、 C(,0)三点,且-=5.
(1)求、的值;(4分)
(2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;(3分)
(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线
的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?
若不存在,请说明理由.(3分)
解:(1)∵抛物线=-++经过点A(0,-4),
∴=-4 又由题意可知,、是方程-++=0的两个根,
∴+=, =-=6 由已知得(-)=25
又(-)=(+)-4=-24 ∴ -24=25
解得=±当=时,抛物线与轴的交点在轴的正半轴上,不合题意,舍去.∴=-.
(2)∵四边形BDCE是以BC为对角线的菱形,根据菱形的性质,点D必在抛物线的对称轴上, 5分
又∵=---4=-(+)+ 6分
∴抛物线的顶点(-,)即为所求的点D. 7分
(3)∵四边形BPOH是以OB为对角线的菱形,点B的坐标为(-6,0),
根据菱形的性质,点P必是直线=-3与
抛物线=---4的交点, 8分
∴当=-3时,=-×(-3)-×(-3)-4=4,
∴在抛物线上存在一点P(-3,4),使得四边形BPOH为菱形. 9分
M
C
B
O
A
图11
四边形BPOH不能成为正方形,因为如果四边形BPOH为正方形,点P的坐标只能是(-3,3),但这一点不在抛物线上. 10分
4. (河池市 本小题满分12分)
如图11,在直角梯形中,∥,,点为
坐标原点,点在轴的正半轴上,对角线,相交于点,
,.
(1)线段的长为 ,点的坐标为 ;
(2)求△的面积;
(3)求过,,三点的抛物线的解析式;
(4)若点在(3)的抛物线的对称轴上,点为该
抛物线上的点,且以,,,四点为顶点的四边形
为平行四边形,求点的坐标.
解:(1)4 ;. …………………(2分)
(2)在直角梯形OABC中,OA=AB=4,
∵ ∥ ∴ △OAM∽△BCM ………(3分)
又 ∵ OA=2BC
∴ AM=2CM ,CM=AC ………………(4分)
M
C
B
O
A
D
所以 ………(5分)
(注:另有其它解法同样可得结果,正确得本小题满分.)
(3)设抛物线的解析式为
由抛物线的图象经过点,,.所以
……………………………(6分)
解这个方程组,得,, ………………(7分)
所以抛物线的解析式为 ………………(8分)
(4)∵ 抛物线的对称轴是CD,
① 当点E在轴的下方时,CE和OA互相平分则可知四边形OEAC为平行四边形,此时点F和点C重合,点F的坐标即为点; …(9分)
② 当点E在轴的下方,点F在对称轴的右侧,存在平行四边形,
∥,且,此时点F的横坐标为6,将代入,可得.所以. ………………………………………(11分)
同理,点F在对称轴的左侧,存在平行四边形,∥,且,此时点F的横坐标为,将代入,可得.所以.(12分)
综上所述,点F的坐标为,. ………(12分)
5、(2010•重庆)已知:如图(1),在平面直角坐标xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A在x轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.
(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;
(2)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;
(3)如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.
解答:解:(1)过点C作CD⊥OA于点D.(如图) ∵OC=AC,∠ACO=120°, ∴∠AOC=∠OAC=30°.
∵OC=AC,CD⊥OA,∴OD=DA=1. 在Rt△ODC中,OC===(1分)
(i)当0<t<时,OQ=t,AP=3t,OP=OA﹣AP=2﹣3t. 过点Q作QE⊥OA于点E.(如图)
在Rt△OEQ中,∵∠AOC=30°,∴QE=OQ=,
∴S△OPQ=OP•EQ=(2﹣3t)•=﹣+t, 即S=﹣+t;(3分)
(ii)当<t≤时(如图) OQ=t,OP=3t﹣2. ∴∠BOA=60°,∠AOC=30°,∴∠POQ=90°.
∴S△OPQ=OQ•OP=t•(3t﹣2)=﹣t, 即S=﹣t;
故当0<t<时,S=﹣+t,当≤t<时,S=﹣t(5分)
(2)D(,1)或(,0)或(,0)或(,)(9分)
(3)△BMN的周长不发生变化.理由如下:
延长BA至点F,使AF=OM,连接CF.(如图) 又∵∠MOC=∠FAC=90°,OC=AC,
∴△MOC≌△FAC, ∴MC=CF,∠MCO=∠FCA.(10分)
∴∠FCN=∠FCA+∠NCA=∠MCO+∠NCA =∠OCA﹣∠MCN=60°,
∴∠FCN=∠MCN. 又∵MC=CF,CN=CN,∴△MCN≌△FCN,∴MN=NF.(11分)
∴BM+MN+BN=BM+NF+BN=BO﹣OM+BA+AF=BA+BO=4.∴△BMN的周长不变,其周长
为4.