- 636.50 KB
- 2021-05-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题八 圆
本章知识点:
1、(要求深刻理解、熟练运用)
1.垂径定理及推论:
如图:有五个元素,“知二可推三”;需记忆其中四个定理,
即“垂径定理”“中径定理” “弧径定理”“中垂定理”.
几何表达式举例:
∵ CD过圆心
∵CD⊥AB
2.“角、弦、弧、距”定理:(同圆或等圆中)
“等角对等弦”; “等弦对等角”;
“等角对等弧”; “等弧对等角”;
“等弧对等弦”;“等弦对等(优,劣)弧”;
“等弦对等弦心距”;“等弦心距对等弦”.
几何表达式举例:
(1) ∵∠AOB=∠COD
∴ AB = CD
(2) ∵ AB = CD
∴∠AOB=∠COD
(3)……………
3.圆周角定理及推论:
(1)圆周角的度数等于它所对的弧的度数的一半;
(2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图)
(3)“等弧对等角”“等角对等弧”;
(4)“直径对直角”“直角对直径”;(如图)
(5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如图)
(1) (2)(3) (4)
几何表达式举例:
(1) ∵∠ACB=∠AOB
∴ ……………
(2) ∵ AB是直径
∴ ∠ACB=90°
(3) ∵ ∠ACB=90°
∴ AB是直径
(4) ∵ CD=AD=BD
∴ ΔABC是RtΔ
4.圆内接四边形性质定理:
圆内接四边形的对角互补,并且任何一个外
角都等于它的内对角.
几何表达式举例:
∵ ABCD是圆内接四边形
∴ ∠CDE =∠ABC
∠C+∠A =180°
5.切线的判定与性质定理:
如图:有三个元素,“知二可推一”;
需记忆其中四个定理.
几何表达式举例:
(1) ∵OC是半径
∵OC⊥AB
(1)经过半径的外端并且垂直于这条
半径的直线是圆的切线;
(2)圆的切线垂直于经过切点的半径;
∴AB是切线
(2) ∵OC是半径
∵AB是切线
∴OC⊥AB
6.相交弦定理及其推论:
(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等;
(2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项.
(1) (2)
几何表达式举例:
(1) ∵PA·PB=PC·PD
∴………
(2) ∵AB是直径
∵PC⊥AB
∴PC2=PA·PB
7.关于两圆的性质定理:
(1)相交两圆的连心线垂直平分两圆的公共弦;
(2)如果两圆相切,那么切点一定在连心线上.
(1) (2)
(2)
几何表达式举例:
(1) ∵O1,O2是圆心
∴O1O2垂直平分AB
(2) ∵⊙1 、⊙2相切
∴O1 、A、O2三点一线
8.正多边形的有关计算:
(1)中心角an ,半径RN , 边心距rn ,
边长an ,内角bn , 边数n;
(2)有关计算在RtΔAOC中进行.
公式举例:
(1) an =;
(2)
二 定理:
1.不在一直线上的三个点确定一个圆.
2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.
3.正n边形的半径和边心距把正n边形分为2n个全等的直角三角
三 公式:
1.有关的计算:
(1)圆的周长C=2πR;(2)弧长L=;(3)圆的面积S=πR2.
(4)扇形面积S扇形 =;
(5)弓形面积S弓形 =扇形面积SAOB±ΔAOB的面积.(如图)
2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S圆柱侧 =2πrh; (r:底面半径;h:圆柱高)
(2)圆锥的侧面积:S圆锥侧 ==πrR. (L=2πr,R是圆锥母线长;r是底面半径)
四 常识:
1. 圆是轴对称和中心对称图形.2. 圆心角的度数等于它所对弧的度数.
3. 三角形的外心 Û 两边中垂线的交点 Û 三角形的外接圆的圆心;
三角形的内心 Û 两内角平分线的交点 Û 三角形的内切圆的圆心.
4. 直线与圆的位置关系:(其中d表示圆心到直线的距离;其中r表示圆的半径)
直线与圆相交 Û d<r ; 直线与圆相切 Û d=r ; 直线与圆相离 Û d>r.
5. 圆与圆的位置关系:(其中d表示圆心到圆心的距离,其中R、r表示两个圆的半径且R≥r)
两圆外离 Û d>R+r; 两圆外切 Û d=R+r; 两圆相交 Û R-r<d<R+r;
两圆内切 Û d=R-r; 两圆内含 Û d<R-r.
6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线.
圆中考专题练习
一:选择题。
1. (2010红河自治州)如图2,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E,若∠AOD=60°,则∠DBC的度数为( )
A.30° B.40° C.50° D.60°
2、(11哈尔滨).如上图,AB是⊙O的弦,半径OA=2,∠AOB=120°,则弦AB的长是( ).
(A) (B) (C) (D)
3、(2011陕西省)9.如图,点A、B、P在⊙O上,点P为动点,要是△ABP为等腰三角形,则所有符合条件的点P有( )
A 1个 B 2个 C 3个 D 4个
4、(2011),安徽芜湖)如图所示,在圆O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为( )
A.19 B.16 C.18 D.20
A
B
C
第5
A
B
C
第6
O
D
E
5、(11·浙江湖州)如图,已知在Rt△ABC中,∠BAC=90°,AB=3,BC=5,若把Rt△ABC绕直线AC
旋转一周,则所得圆锥的侧面积等于( )
A.6π B.9π C.12π D.15π
6、(2010·浙江湖州).如图,已知⊙O的直径AB⊥弦CD于点E.下列结论中一定正确的是( )
A.AE=OE B.CE=DE C.OE=CE D.∠AOC=60°
7、(上海)已知圆O1、圆O2的半径不相等,圆O1的半径长为3,若圆O2上的点A满足AO1 = 3,则圆O1与圆O2的位置关系是( )
A.相交或相切 B.相切或相离 C.相交或内含 D.相切或内含
8. (莱芜)已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( )
A.2.5 B.5 C.10 D.15
9、(10·绵阳).如图,等腰梯形ABCD内接于半圆D,且AB = 1,BC = 2,则OA =( ).
C
B
A
O
D
A. B. C. D.
第9题图
A
B
C
10、(2010昆明)如图,在△ABC中,AB = AC,AB = 8,BC = 12,分别以
AB、AC为直径作半圆,则图中阴影部分的面积是( )
A. B.
C. D.
11、(10年兰州)9. 现有一个圆心角为,半径为的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为
A. B. C. D.
二:填空
1、(11怀化)如图6,已知直线AB是⊙O的切线,A为切点,OB交⊙O于点C,点D在⊙O上,且∠OBA=40°,则∠ADC=______.
A
B
C
D
O
E
(第15题)
2、(10年安徽)如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=500,点D是BAC上一点,
则∠D=______
3、(2011台州市)如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于E.则直线CD与⊙O的位置关系是 ,阴影部分面积为(结果保留π) .
4、(10株洲市)15.两圆的圆心距,它们的半径分别是一元二次方程
的两个根,这两圆的位置关系是 .
5、(10成都)如图,在中,为的直径,,则的度数是_______度.
6、(苏州2011中考题18).如图,已知A、B两点的坐标分别为、(0,2),P是△AOB外接圆上的一点,且∠AOP=45°,则点P的坐标为 .
7、(2010年成都).若一个圆锥的侧面积是,侧面展开图是半圆,则该圆锥的底面圆半径是___________.
三:解答题
1、(10珠海)如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连结PA、PB、PC、PD.(1)当BD的长度为多少时,△PAD是以AD为底边的等腰三角形?并证明;
(2)若cos∠PCB=,求PA的长.
2、(10镇江市).如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连结OE,CD=,∠ACB=30°.(1)求证:DE是⊙O的切线;(2)分别求AB,OE的长;
3、(2010宁波市)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连结EF、EO,若DE=2,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.
4、(桂林2011)25.(本题满分10分)如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,
FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.
(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.
H
5、(10年兰州)26.(本题满分10分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;
(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN·MC的值.
6、(11绵阳)如图,△ABC内接于⊙O,且∠B = 60°.过点C作圆的切线l与直径AD的延长线交于点E,AF⊥l,垂足为F,CG⊥AD,垂足为G.(1)求证:△ACF≌△ACG;(2)若AF = 4,求图中阴影部分的面积.
B
D
F
A
O
G
E
C
l
7、(苏州11、27).(本题满分9分)如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC长为半径作圆,交BC边于点E.过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F
(1)求证:OE∥AB;(2)求证:EH=AB;(3)若,求的值.
近年广州中考题
20.(本小题满分10分)
如图10,在中,,.(1)求的度数;
A
O
D
C
B
图10
(2)求的周长.
23、(2008广州)(12分)如图9,射线AM交一圆于点B、C,射线AN交该圆于点D、E,且
(1)求证:AC=AE
(2)利用尺规作图,分别作线段CE的垂直平分线与∠MCE的平分线,两线交于点F(保留作图痕迹,不写作法)求证:EF平分∠CEN
24.(2010广东广州,24,14分)如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.
(1)求弦AB的长;
(2)判断∠ACB是否为定值,若是,求出∠ACB的大小;否则,请说明理由;
(3)记△ABC的面积为S,若=4,求△ABC的周长.
C
P
D
O
B
A
E
图9
25. (2011广东广州市,25,14分)
如图7,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中 ∠DCE是直角,点D在线段AC上.
(1)证明:B、C、E三点共线;
(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=OM;
(3)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(图8),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=OM1是否成立?若是,请证明;若不是,说明理由.
A
B
C
D
E
M
N
O
图7
A
B
C
D1
E1
M1
O
N1
图8
部分答案:一:选择题
1、A 2、B 3、D 4、 D 5、D 6、B 7、A 8、C 9、A 10、D 11、C
二:填空1、25 2、40 3、相切、π 4、外切 5、100 6、 7、 3
三:解答题:
1、解:(1)当BD=AC=4时,△PAD是以AD为底边的等腰三角形
∵P是优弧BAC的中点 ∴弧PB=弧PC ∴PB=PC ∵BD=AC=4 ∠PBD=∠PCA
∴△PBD≌△PCA∴PA=PD 即△PAD是以AD为底边的等腰三角形
(2)由(1)可知,当BD=4时,PD=PA,AD=AB-BD=6-4=2
过点P作PE⊥AD于E,则AE=AD=1 ∵∠PCB=∠PAD
∴cos∠PAD=cos∠PCB= ∴PA=
2、(1)∵AB是直径,∴∠ADB=90°
∴OD⊥DE,∴DE是⊙O的切线.
(2)在,
5、解:(1)∵OA=OC,∴∠A=∠ACO ∵∠COB=2∠A ,∠COB=2∠PCB ∴∠A=∠ACO=∠PCB
∵AB是⊙O的直径 ∴∠ACO+∠OCB=90° ∴∠PCB+∠OCB=90°,即OC⊥CP
∵OC是⊙O的半径 ∴PC是⊙O的切线
(2)∵PC=AC ∴∠A=∠P ∴∠A=∠ACO=∠PCB=∠P ∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB
∴∠CBO=∠COB ∴BC=OC ∴BC=AB
(3)连接MA,MB ∵点M是弧AB的中点 ∴弧AM=弧BM ∴∠ACM=∠BCM
∵∠ACM=∠ABM ∴∠BCM=∠ABM ∵∠BMC=∠BMN ∴△MBN∽△MCB
∴ ∴BM2=MC·MN ∵AB是⊙O的直径,弧AM=弧BM ∴∠AMB=90°,AM=BM
∵AB=4 ∴BM= ∴MC·MN=BM2=8
6:(1)如图,连结CD,OC,则∠ADC =∠B = 60°.∵ AC⊥CD,CG⊥AD,∴ ∠ACG =∠ADC = 60°.
由于 ∠ODC = 60°,OC = OD,∴ △OCD为正三角形,得 ∠DCO = 60°.由OC⊥l,得 ∠ECD = 30°,∴ ∠ECG = 30° + 30° = 60°.进而 ∠ACF = 180°-2×60° = 60°,∴ △ACF≌△ACG.
(2)在Rt△ACF中,∠ACF = 60°,AF = 4,得 CF = 4.
在Rt△OCG中,∠COG = 60°,CG = CF = 4,得 OC =.在Rt△CEO中,OE =.
B
D
F
A
O
G
E
C
l
于是 S阴影 = S△CEO-S扇形COD ==.
25、【答案】(1)∵AB为⊙O直径 ∴∠ACB=90° ∵△DCE为等腰直角三角形
∴∠ACE=90° ∴∠BCE=90°+90°=180° ∴B、C、E三点共线.
(2)连接BD,AE,ON.∵∠ACB=90°,∠ABC=45° ∴AB=AC ∵DC=DE
∠ACB=∠ACE=90° ∴△BCD≌△ACE ∴AE=BD,∠DBE=∠EAC ∴∠DBE+∠BEA=90°
∴BD⊥AE ∵O,N为中点 ∴ON∥BD,ON=BD
同理OM∥AE,OM=AE ∴OM⊥ON,OM=ON ∴MN=OM
(3)成立 证明:同(2)旋转后∠BCD1=∠BCE1=90°-∠ACD1
所以仍有△BCD1≌△ACE1,所以△ACE1是由△BCD1绕点C顺时针旋转90°而得到的,故BD1⊥AE1
其余证明过程与(2)完全相同.