- 208.00 KB
- 2021-05-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
四川绵阳南山双语学校人教版数学中考复习小练习
--代数式及整式(含因式分解)
姓名 班级 得分
1.苹果的单价为 a 元/千克,香蕉的单价为 b 元/千克,买 2 千克苹果
和 3 千克香蕉共需 ( )
A. (a+b)元 B. (3a-2b)元
C. (2a+3b)元 D. 5(a+b)元
2.为庆祝世界反法西斯战争胜利 70 周年,我市某楼盘让利于民,决
定将原价为 a 元/米 2 的商品房价降价 10%销售,降价后的销售价为
( )
A. a-10% B. a·10%
C. a(1-10%) D. a(1+10%)
3.如图①是一个长为 2m,宽为 2n(m>n)的长方形,用剪刀沿图中虚线
(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按
图 ② 那 样 拼 成 一 个 正 方 形 , 则 中 间 空 的 部 分 的 面 积 是
( )
第 3 题图
A. 2mn B. (m+n)2
C. (m-n)2 D. m2-n2
4.将一些相同的“ ”按如图所示的规律依次摆放,观察每个“龟图”
中的“ ”的个数,若第 n 个“龟图”中有 245 个“ ”,则 n=( )
第 4 题图
A.14 B.15 C.16 D.17
5.已知:一组数 1,3,5,7,9,…,按此规律,则第 n 个数是________.
6.观察下列等式:21=2;22=4;23=8;24=16;25=32;27=128;…;
通过观察,用你所发现的规律确定 22019 的个位数字是________.
7.如图所示,将若干个正三角形、正方形和圆形按一定规律从左向右
排列,那么第 2019 个图形是________.
第 7 题图
8.观察下面的单项式,a,-2a2,4a3,-8a4,…,根据你所发现的规
律,则第 8 个式子是________.
9. 已 知 a2 + 3a = 1 , 则 代 数 式 2a2 + 6a - 1 的 值 为
( )
A. 0 B. 1 C. 2 D. 3
10.若 a2-ab=0(b≠0),则
ba
a
=( )
A. 0 B. 1
2 C. 0 或 1
2 D. 1 或 2
11.已知 1
4m2+1
4n2=n-m-2,则1
m
-1
n
的值等于( )
A. 1 B. 0 C. -1 D. -1
4
12.若 m2-n2=6,且 m-n=2,则 m+n=________.
13.已知:a+b=3,ab=2,则(a-b)2=________.
14.若实数 x 满足 x2-2 2x-1=0,则 x2+ 2
1
x
=________.
15.已知 a+b=8,a2b2=4,则
2
22 ba -ab=________.
16.已知当 x=1 时,2ax2+bx 的值为 3,则当 x=2 时,ax2+bx 的值
为________.
17.已知
a
1 + 1
2b
=3,则代数式
baab
baba
634
452
的值为________.
18.若实数 x 满足 x2-2x-1=0,则 2x3-7x2+4x-2019=________.
19.计算(-x3y)2 的结果是 ( )
A. -x5y B. x6y C. -x3y2 D. x6y2
20.计算 3a2-a2 的结果是 ( )
A. 4a2 B. 3a2 C. 2a2 D. 3
21.你认为下列各式正确的是( )
A. a2=(﹣a)2 B. a3=(﹣a)3
C. ﹣a2=|﹣a2| D. a3=|a3|
22.下列计算正确的是 ( )
A. a8÷a4=a2 B. (2a2)3=6a6
C. 3a3-2a2=a D. 3a(1-a)=3a-3a2
23.下列运算正确的是 ( )
A. | 2-1|= 2-1 B. x3·x2=x6
C. x2+x2=x4 D. (3x2)2=6x4
24.下列计算正确的是 ( )
A. x2+ 5x =x7 B. x5-x2=3x
C. x2·x5=x10 D. x5÷x2=x3
25.下列运算结果正确的是 ( )
A. 8 - 18=﹣ 2 B. (-0.1)-2=0.01
C. (2a
b ) 2÷ b
2a
=2a
b D. (-m)3·m2=-m6
26.下列计算正确的是( )
A. 2a+3b=5ab B. (﹣2a2b)3=﹣6a6b3
C. 8+ 2=3 2 D. (a+b)2=a2+b2
27.下列等式一定成立的是( )
A. a2×a5=a10 B. a+b= a+ b
C. (﹣a3)4=a12 D. 2a =a
28.下列运算正确的是 ( )
A. (-ab2)3÷(ab2)2=-ab2
B. 3a+2a=5a2
C. (2a+b)(2a-b)=2a2-b2
D. (2a+b)2=4a2+b2
29.下列计算正确的是 ( )
A. 3x2y+5xy=8x3y2 B. (x+y)2=x2+y2
C. (-2x)2÷x=4x D. y
x-y
+ x
y-x
=1
30.计算(x+3)(x-3)=________.
31.计算:(-a2b)2·a=________.
32.计算:a(a2÷a)-a2=________.
33.如果 x2+mx+1=(x+n)2,且 m>0,则 n 的值是________.
34.下列多项式能因式分解的是( )
A. x2+y2 B. -x2-y2
C. -x2+2xy-y2 D. x2-xy+y2
35.分解因式:x2-5x=________.
36.分解因式:m2-9=______________.
37.分解因式:x2-4(x-1)=________.
38.因式分解:8a2-2=________.
39.在实数范围内因式分解:x2y-3y=________.
40.因式分解:2mx2+4mxy+2my2=________.
41.多项式 ax2-a 与多项式 2x -2x+1 的公因式是________.
42.已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),
其中 a、b 均为整数,则 a+3b=________,ab=________.
43.已知实数 x、y、m 满足 x+2+|3x+y+m|=0,且 y 为负数,则 m
的取值范围是 ( )
A. m>6 B. m<6
C. m>-6 D. m<-6
44. 若 1a + b2 - 4b + 4 = 0 , 则 ab 的 值 等 于
( )
A. -2 B. 0 C. 1 D. 2
45. 若 5 ba + |2a - b + 1| = 0 , 则 (b - a)2019 =
( )
A. ﹣1 B. 1 C. 52019 D. ﹣52019
46.在数轴上表示实数 a 的点如图所示,化简 2)5( a +|a-2|的结果为
________.
第 46 题图
47.若 y= 3x + x3 +2,则 xy=________.
48.若实数 x、y 满足(2x+3)2+|9-4y|=0,则 xy 的立方根为________.
49.已知:(a+6)2+ 322 bb =0,则 2b2-4b-a 的值为________.
答案
1. C 【解析】根据单价×数量=金额,分别表示出苹果与香蕉的金
额,再相加即可.即共需(2a+3b)元.
2. C 【解析】设原价为单位“1”,降价 10%后为(1-10%),而单位“1”
的销售价为 a 元/米 2,即可得出降价后的销售价为 a(1-10%)元/米 2.
3. C 【解析】由拼图可知,中间空白部分的面积是(m+n)2-4mn=(m
-n)2.
4. C 【解析】
图序
图中圈的
个数 an
圈的个数与
图序的关系
① 5
5+1×0=5+1×
(1-1)
② 7
5+2×1=5+2×
(2-1)
③ 11
5+3×2=5+3×
(3-1)
④ 17
5+4×3=5+4×
(4-1)
… … …
245 5+n(n-1)
由表知,这组图的变化规律为 5+n(n-1),∵第 n 个图有 245 个“ ”,
∴5+n(n-1)=245,解得 n=16 或 n=-15(舍去),故 n=16.
5. 2n-1 【解析】第一个数为 1,即 2×1-1;第二个数为 3,即 2×2
-1;第三个数为 5,即 2×3-1;第四个数为 7,即 2×4-1,…,
因此第 n 个数为 2n-1.
6. 2 【解析】从前面 7 个式子可看出规律为:每 4 个式子循环一次,
个位数字分别是 2、4、8、6.因为 2019÷4=503……1,所以 22019 的个
位数字是 2.
7. 正方形 【解析】通过观察可以发现,除去前面两个正三角形,
后面的所有图形以 6 个图形(3 个正方形+1 个三角形+2 个圆)为结构
单元进行周期循环,因此,(2019-2)÷6=335……2,所以第 2019 个
图形是这 6 个图形组成的单位结构中的第 2 个,即正方形.
8. -128a8 【解析】第 1 个式子:a=(-2)0a1;第 2 个式子:-2a2
=(-2)1a2;第 3 个式子:4a3=(-2)2a3;第 4 个式子:-8a4=(-2)3a4;
观察系数可得,第 n 个式子的系数为(-2)n-1,观察字母及字母指数
可得,字母保持不变,指数与式子序号相同,综上可得,第 n 个式子
为(-2)n-1an,所以第 8 个式子为(-2)8-1a8=-128a8.
9. B 【解析】∵a2+3a=1,∴2a2+6a-1=2(a2+3a)-1=2×1-1
=1.
10. C 【解析】对于已知等式 a2-ab=0(b≠0),当 a=0 时,等式仍
然成立,此时
ba
a
=0;当 a≠0 时,对于已知等式两边同时除以 a2
后得到 1-b
a
=0,即b
a
=1,则
ba
a
=
a
ba
1 =
a
b1
1 = 1
1+1
=1
2
,故答案
为 0 或1
2.
11. C 【解析】1
4m2+1
4n2=n-m-2,整理得 1
4m2+m+1+1
4n2-n+1
=0,∴(1
2m+1)2+(1
2n-1)2=0,∴1
2m+1=0,1
2n-1=0,解得 m=
-2,n=2,∴
nm
11 =n-m
mn
=2-(-2)
(-2)×2
=-1.
12. 3 【解析】由 m2-n2=6 可得(m+n)(m-n)=6,将 m-n=2 代
入(m+n)(m-n)=6 中,可得 m+n=3.
13. 1 【解析】(a-b)2=(a+b)2-4ab=32-2×4=1.
14. 10 【解析】已知实数 x 满足 x2-2 2x-1=0,所以 x≠0,则
x
xx 1222 =0,得出 x-
x
1 -2 2=0,所以 x-
x
1 =2 2,两边平方
得 x2-2+ 2
1
x
=(2 2)2,所以 x2+ 2
1
x
=2+8=10.
15. 28 或 36 【解析】因为 a+b=8,a2b2=4,所以 ab=±2,原式
=
2
2)( 2 abba -ab=82
2
-2ab,将 ab=±2 代入得,原式=28 或 36.
16. 6 【解析】由已知条件知,当 x=1 时,2a+b=3;当 x=2 时,
ax2+bx=4a+2b=2(2a+b)=2×3=6.
17. ﹣1
2
【解析】由已知条件可得
a
ba
2
2 =3,即 a+2b=6ab,原式
=
)2(34
)2(25
baab
baab
=
abab
abab
184
125
=
ab
ab
14
7
=﹣1
2.
18. ﹣2020 【解析】由已知 x2-2x-1=0 可得 x2=2x+1,x≠0,
则有 2x3=4x2+2x,将此式代入 2x3-7x2+4x-2019 中,整理得-3x2
+6x-2019=﹣3(x2-2x)-2019=﹣3×1-2019=﹣2020.
19. D
20. C 【解析】由法则可知,把同类项的系数相减,字母和指数不
变,所以 3a2-a2=(3-1)a2=2a2.
21. A 【解析】
选项 逐项分析 正误
A 对于任意实数都有 a2=(-a)2 √
B
当 a>0 时,a3>0,(-a)3<0,∴a3≠(-a)3,同理 a<0 时
两者也不相等
×
C 对于任意实数-a2≤0,|-a2|≥0,所以两者不相等 ×
D
当 a≥0 时 a3≥0,当 a<0 时,a3<0,而|a3|≥0,所以两
者不相等
×
22. D 【解析】
选项 逐项分析 正误
A a8÷a4=a4≠a2 ×
B (2a2)3=23(a2)3=8a6≠6a6 ×
C
3a3 与-2a2 不是同类项,不
能合并
×
D 3a(1-a)=3a-3a2 √
23. A 【解析】
选项 逐项分析 正误
A ∵ 2-1>0,∴| 2-1|= 2-1 √
B x3·x2=x3+2=x5≠x6 ×
C x2+x2=(1+1)x2=2x2≠x4 ×
D (3x2)2=32×(x2)2=9x2×2=9x4≠6x4 ×
24. D 【解析】
选项 逐项分析 正误
A
x2 与 x5 不是同类项,不
能合并
×
B
x2 与 x5 不是同类项,不
能合并
×
C x2·x5=x2+5=x7≠x10 ×
D x5÷x2=x5-2=x3 √
25. A 【解析】
选项 逐项分析 正误
A 8- 18=2 2-3 2=(2-3) 2=- 2 √
B (-0.1)-2= 1
(-0.1)2
= 1
0.01
=100≠0.01 ×
C (2a
b )2÷ b
2a
=4a2
b2 ·2a
b
=8a3
b3 ≠2a
b ×
D (-m)3·m2=-m3·m2=-m3+2=-m5≠ ×
-m6
26. C 【解析】
选项 逐项分析 正误
A 2a 和 3b 不是同类项,不能合并 ×
B 原式=(-2)3a2×3b3=-8a6b3≠-6a6b3 ×
C 8+ 2=2 2+ 2=3 2 √
D (a+b)2=a2+2ab+b2≠a2+b2 ×
27. C 【解析】
选项 逐项分析 正误
A a2×a5=a2+5=a7≠a10 ×
B
当 a<0,b<0,此时根号无意义,式
子不成立
×
C (-a3)4=(-1)4×a3×4=a12 √
D 当 a<0 时,式子不成立 ×
28. A 【解析】
选项 逐项分析 正误
A 原式=-a3-2b2×3-2×2=-ab2 √
B 原式=5a≠5a2 ×
C 原式=(2a)2-b2=4a2-b2≠2a2-b2 ×
D
原式=(2a)2+4ab+b2=4a2+4ab+b2≠4a2
+b2
×
29. C 【解析】
选项 逐项分析 正误
A 两个单项式不是同类项,不能合并 ×
B (x+y)2=x2+2xy+y2≠x2+y2 ×
C (-2x)2÷x=4x2÷x=4x √
D y
x-y
+ x
y-x
= y
x-y
- x
x-y
=-1≠1 ×
30. x2-9 31. a5b2
32. 0 【解析】原式=a·a2-1-a2=a2-a2=0.
33. 1 【解析】根据已知,得(x+n)2=x2+2nx+n2=x2+mx+1, 2n=
m,n2=1,∴n=±1,又∵m>0,∴n=1.
34. C 【解析】
选项 逐项分析 正误
A x2+y2 是最简式,无法再分解因式 ×
B -x2-y2 是最简式,无法再分解因式 ×
C
-x2+2xy-y2=-(x2-2xy+y2)=-(x
-y)2
√
D x2-xy+y2 无法再分解因式 ×
35. x(x-5) 36. (m+3)(m-3)
37. (x-2)2 38. 2(2a+1)(2a-1)
39. y(x+ 3)(x- 3) 40. 2m(x+y)2
41. x-1 【解析】∵ax2-a=a(x+1)(x-1), x2-2x+1=(x-1)2,∴
公因式是(x-1).
42. -31,56 【解析】原式=(3x-7)(2x-21-x+13)=(3x-7)(x-
8),∴可得 a=-7,b=-8,∴a+3b=-31,ab=56.
43. A 【解析】根据非负数的性质可知
03
22
myx
x ,又由已知条件
得
03
02
myx
x ⇒
mxy
x
3
2 ⇒y=6-m,∵y<0,即 6-m<0⇒m>
6.
44. D 【解析】∵ 1a + 2b - b4 +4=0,∴ 1a +(b-2)2=0,∴a
-1=0 且 b-2=0,∴a=1,b=2,∴ab=2.
45. A 【解析】∵ 5 ba +|2a-b+1|=0,∴
012
05
ba
ba ,解得
3
2
b
a ,∴(b-a)2019=(-3+2)2019=-1.
46.3 【解析】∵由题意得 2