中考数学解答题1 9页

  • 103.50 KB
  • 2021-05-11 发布

中考数学解答题1

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
中考数学解答题(1)‎ ‎ ‎ 一.解答题(共10小题)‎ ‎1.如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.‎ ‎(1)求证:DE与⊙O相切;‎ ‎(2)求证:BC2=2CD•OE;‎ ‎(3)若cosC=,DE=4,求AD的长.‎ ‎2.如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C,连接OC,AO延长线交⊙O于点D,OF是∠DOB的平分线,E为OF上一点,连接BE.‎ ‎(1)求证:AB与⊙O相切;‎ ‎(2)①当∠OEB=   时,四边形OCBE为矩形;‎ ‎②在①的条件下,若AB=4,则OA=   时,四边形OCBE为正方形?‎ ‎3.如图①,在正方形ABCD中,E为CD上一动点,连接AE交对角线BD于点F,过点F作FG⊥AE交BC于点G.‎ ‎(1)求证:AF=FG;‎ ‎(2)如图②,连接EG,当BG=3,DE=2时,求EG的长.‎ ‎4.如图,矩形ABCD中,AB=6m,AD=4m.‎ ‎(1)如图(1),矩形AEFN的顶点E,N分别在边AB和AD上,点F在矩形ABCD的内部,以点A为位似中心,作矩形AEFN的位似矩形AMPQ,且使得矩形的顶点P恰好落在对角线BD上;(不要求写作法)‎ ‎(2)若AM=4m,求矩形AMPQ的面积;‎ ‎(3)如图(2),在一个矩形空地ABCD上,王师傅准备修建一个矩形的花坛AMPQ,要求点M在AB上,点Q在AD上,设AM的长为xm,矩形AMPQ的面积为Sm2,求当x为何值时,S有最大值?并求出最大值.‎ ‎5.如图,四边形OABC为直角梯形,A、B、C的坐标分别为(4,0)、(4,4)、(2,4),DEFG的边长为4的正方形,D、G在x轴上,当点D与点O重合时,此正方形开始向右运动;当点G与点A重合时,运动停止,设OD=x,此正方形和直角梯形重合部分的面积为S,回答下列问题:‎ ‎(1)求x的取值范围;‎ ‎(2)求tan∠COA的值;‎ ‎(3)当x=2时,S=   ;当x=4时,S=   ;当x=6时,S=   ;‎ ‎(4)求S与x的函数关系式.‎ ‎6.如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处.线段AE上有一动点P(不与A重合),从A点开始沿AE方向匀速运动,到达点E时停止.运动的速度为每秒2个单位长度,设运动的时间为t秒,过P点作AE的垂线交AD于点Q,以PQ为边向上作正方形PQMN,正方形PQMN与矩形ABCO重叠部分(阴影部分)面积为S(平方单位).‎ ‎(1)求D、E两点的坐标.‎ ‎(2)当重叠部分为五边形时,求S与t之间的函数关系式并直接写出t的取值范围.‎ ‎(3)在(2)的条件下,当t为何值时,S有最大值?最大值是多少?‎ ‎(4)连接PC、CQ.当△CQP为直角三角形时,直接写出t的值.‎ ‎7.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.‎ ‎(1)求OA、OB的长.‎ ‎(2)若点E为x轴上的点,且S△AOE=,试判断△AOE与△AOD是否相似?并说明理由.‎ ‎(3)在直线AB上是否存在点F,使以A、C、F为顶点的三角形是等腰三角形?如果存在,请直接写出点F的坐标.‎ ‎8.如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.‎ ‎(1)求抛物线的解析式;‎ ‎(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标;‎ ‎(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.‎ ‎9.如图,已知二次函数y=﹣x2+bx+c(c>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.‎ ‎(1)求二次函数的解析式;‎ ‎(2)点P为线段BM上的一个动点,过点P作x轴的垂线PQ,垂足为Q,若OQ=m,四边形ACPQ的面积为S,求S关于m的函数解析式,并写出m的取值范围;‎ ‎(3)探索:线段BM上是否存在点N,使△NMC为等腰三角形?如果存在,求出点N的坐标;如果不存在,请说明理由.‎ ‎10.如图,在平面直角坐标系中,抛物线y=x2+bx+c的图象与x轴交于点A(2,0)、B(﹣4,0),与y轴交于点D.‎ ‎(1)求抛物线的解析式;‎ ‎(2)连接BD,点P在抛物线的对称轴上,以Q为平面内一点,四边形PBQD能否成为矩形?若能,请求出点P的坐标;若不能,请说明理由;‎ ‎(3)在抛物线上有一点M,过点M、A的直线MA交y轴于点C,连接BC,若∠MBO=∠BCO,请直接写出点M的坐标.‎ ‎ ‎ 中考数学解答题(1)‎ 参考答案 ‎ ‎ 一.解答题(共10小题)‎ ‎1.;2.90°;2;3.;4.;5.4;12;8;6.;7.;8.;9.;10.;‎ ‎ ‎