- 118.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
中考中的新定义题型
二、奇异三角形
例2(2011宁波市)阅读下面情景对话,然后解答问题:
A
B
C
D
E
O
(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?
(2)在Rt△ABC中,∠ACB=90°,AB=,AC=,BC=,且,若Rt△ABC是奇异三角形,求;
(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆ADB的中点, C、D在直径AB两侧,若在⊙O内存在点E,使得AE=AD,CB=CE.
① 求证:△ACE是奇异三角形;
② 当△ACE是直角三角形时,求∠AOC的度数.
老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小明:那直角三角形中是否存在奇异三角形呢?
小华:等边三角形一定是奇异三角形!
:
E
D
C
B
A
四、黄金三角形
例4(嘉兴市)顶角为36°的等腰三角形称为黄金三角形。如图,△ABC、△BDC、△DEC都是黄金三角形已知AB=1,则DE=____________。
五、位似三角形
例5(南京市)如果两个三角形不仅是相似三角形,而且每对对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位似中心.利用三角形的位似可以将一个三角形缩小或放大.
(1)选择:如图1,点O是等边三角形PQR的中心,P′、Q′、R′分别是OP、OQ、OR的中点,则△P′Q′R′与△PQR是位似三角形.此时,△P′Q′R′与△PQR的位似比、位似中心分别为( ).
A.2、点P B.、点P C.2、点O D.、点O
A
O
B
C
D
E
C'
D'
E'
图2
Q
R
O
P'
Q'
R'
图1
(2) 如图2,用下面的方法可以画△AOB的内接
等边三角形.阅读后证明相应问题.
画法:①在△AOB内画等边三角形CDE,
使点C在OA上,点D在OB上;
②连结OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,
作E′D′∥ED,交OB于点D′;
③连结C′D′.则△C′D′E′是△AOB的内接三角形.
求证:△C′D′E′是等边三角形.
六、单位正三角形
例6(吉林省)如图,.图中的虚线网络我们称之为正三角形网格,它的每一个小三角形都是边长为1个单位长度的正三角形,这样的三角形称为单位正三角形.
(1)直接写出单位正三角形的高与面积;
(2)图①中的□ABCD含有多少个单位正三角形?□ABCD的面积是多少?
(3)求出图①中线段AC的长(可作辅助线);
(4)求出图②中四边形EFGH的面积.
七、倍角三角形
例7(天津市)在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示。
(Ⅰ)如图1,在△ABC中,∠A=2∠B,且∠A=60°。求证:a2=b(b+c)
(Ⅱ)如果一个三角形的一个内角等于另一个内角的2 倍,我们称这样的三角形为“倍角三角形”。本题第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,如图2,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成了?并证明你的结论;
(Ⅲ)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数。
_
a
_
b
_
c
_
B
_
C
_
A
图1
图2
_
a
_
b
_
c
_
B
_
C
_
A
D
25.(2015宁波本题12分)如图1,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,如果∠APB绕点P旋转时始终满足,我们就把∠APB叫做∠MON的智慧角。
(1)如图2,已知∠MON=90°,点P为∠MON的平分线上一点,以点P为顶点的角的两边分别与射线OM,ON交于A,B两点,且∠APB=135°。
求证:∠APB是∠MON的智慧角;
(2)如图1,已知∠MON=(0°<<90°),OP=2,若∠APB是∠MON的智慧角,连结AB,用含的式子分别表示∠APB的度数和△AOB的面积;
(3)如图3,C是函数图象上的一个动点,过点C的直线CD分别交轴和轴于点A,B两点,且满足BC=2CA,请求出∠AOB的智慧角∠APB的顶点P的坐标。