• 275.00 KB
  • 2021-05-13 发布

中考数学复习专题6数学思想方法二学生版

  • 8页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2013年中考数学复习专题讲座六:数学思想方法(二)‎ 一、中考专题诠释 数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。‎ 抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.‎ 二、解题策略和解法精讲 数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。‎ 三、中考考点精讲 考点四:方程思想 从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。‎ 用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。这种思想在代数、几何及生活实际中有着广泛的应用。‎ 例1 (2012•广东)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2011年公民出境旅游总人数约7200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下列问题:‎ ‎(1)求这两年我国公民出境旅游总人数的年平均增长率;‎ ‎(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?‎ 例2 (2012•桂林)李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即匀速步行回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.‎ ‎(1)李明步行的速度(单位:米/分)是多少?‎ ‎(2)李明能否在联欢会开始前赶到学校?‎ 考点五:函数思想 函数思想是用运动和变化的观点,集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决。 ‎ 所谓函数思想的运用,就是对于一个实际问题或数学问题,构建一个相应的函数,从而更快更好地解决问题。构造函数是函数思想的重要体现,运用函数思想要善于抓住事物在运动过程中那些保持不变的规律和性质。‎ 例4 (2012•十堰)某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.‎ ‎(1)甲、乙两种材料每千克分别是多少元?‎ ‎(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?‎ ‎(3)在(2)的条件下,若生产一件A产品需加工费200元,生产一件B产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费)‎ ‎22.(2012•广元)某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把1200m3的生活垃圾运走.‎ ‎(1)假如每天能运xm3,所需时间为y天,写出y与x之间的函数关系式;‎ ‎(2)若每辆拖拉机一天能运12m3,则5辆这样的拖拉机要用多少天才能运完?‎ ‎(3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?‎ ‎ ‎ 考点六:数形结合思想 数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。 ‎ 例5 (2012•襄阳)如图,直线y=k1x+b与双曲线y=相交于A(1,2)、B(m,﹣1)两点.‎ ‎(1)求直线和双曲线的解析式;‎ ‎(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系式;‎ ‎(3)观察图象,请直接写出不等式k1x+b>的解集.‎ 例7 (2012•济南)如图1,抛物线y=ax2+bx+3与x轴相交于点A(﹣3,0),B(﹣1,0),与y轴相交于点C,⊙O1为△ABC的外接圆,交抛物线于另一点D.‎ ‎(1)求抛物线的解析式;‎ ‎(2)求cos∠CAB的值和⊙O1的半径;‎ ‎(3)如图2,抛物线的顶点为P,连接BP,CP,BD,M为弦BD中点,若点N在坐标平面内,满足△BMN∽△BPC,请直接写出所有符合条件的点N的坐标.‎ 四、中考真题训练 一、选择题 ‎1.(2012•贵港)如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m>kx﹣1的解集在数轴上表示正确的是(  )‎ ‎  A. B. C. D. ‎ ‎5.(2012•柳州)小兰画了一个函数y=的图象如图,那么关于x的分式方程=2的解是(  )‎ ‎  A.x=1 B. x=2 C. x=3 D. x=4‎ ‎6.(2012•广州)如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2)、B(1,﹣2)两点,若y1<y2,则x的取值范围是(  )‎ ‎  A.x<﹣1或x>1 B. x<﹣1或0<x<1 ‎ C.﹣1<x<0或0<x<1 D.﹣1<x<0或x>1‎ ‎7.(2012•南平)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为(  )‎ ‎  A. B. C. D. 3‎ ‎8.(2012•荆门)如图,已知正方形ABCD的对角线长为2,将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为(  )‎ ‎  A.8 B. 4 C. 8 D.6‎ ‎9.(2012•河北)如图,在平行四边形ABCD中,∠A=70°,将平行四边形折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,则∠AMF等于(  )‎ ‎  A.70°B. 40°C. 30° D. 20°‎ ‎10.(2012•佛山)如图,把一个斜边长为2且含有30°角的直角三角板ABC绕直角顶点C顺时针旋转90°到△A1B1C,则在旋转过程中这个三角板扫过的图形的面积是(  )‎ ‎  A.π B. C. D. ‎ ‎14.(2012•威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论错误的是(  )‎ ‎  A. abc>0 B. 3a>2b ‎  C. m(am+b)≤a﹣b(m为任意实数) D. 4a﹣2b+c<0‎ ‎16.(2012•衡阳)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:‎ ‎①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0‎ 其中正确的个数为(  )A.1 B. 2 C. 3 D. 4‎ 二、填空题 ‎19.(2012•南宁)如图,已知函数y=x﹣2和y=﹣2x+1的图象交于点P,根据图象可得方程组的解是  .‎ ‎20.(2012•连云港)如图,直线y=k1x+b与双曲线y=交于A、B两点,其横坐标分别为1和5,则不等式k1x<+b的解集是   .‎ ‎22.(2012•淮安)如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差 km/h.‎ ‎27.(2012•朝阳)如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费   元.‎ ‎28.(2012•北海)如图,点A的坐标为(﹣1,0),点B在直线y=2x﹣4上运动,当线段AB最短时,点B的坐标是   .‎ ‎29.(2012•宜宾)如图,一次函数y1=ax+b(a≠0)与反比例函数的图象交于A(1,4)、B(4,1)两点,若使y1>y2,则x的取值范围是   .‎ 三、解答题 ‎30.(2012•南通)甲.乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:‎ ‎(1)线段CD表示轿车在途中停留了   h;‎ ‎(2)求线段DE对应的函数解析式;‎ ‎(3)求轿车从甲地出发后经过多长时间追上货车.‎ ‎31.(2012•新疆)如图,一次函数y=kx﹣3的图象与反比例函数的图象交于P(1,2).‎ ‎(1)求k,m的值;‎ ‎(2)根据图象,请写出当x取何值时,一次函数的值小于反比例函数的值.‎ ‎32.(2012•咸宁)如图,一次函数y1=kx+b的图象与反比例函数的图象交于A(1,6),B(a,2)两点.‎ ‎(1)求一次函数与反比例函数的解析式;‎ ‎(2)直接写出y1≥y2时x的取值范围.‎ ‎33.(2012•长沙)以“开放崛起,绿色发展”为主题的第七届“中博会”已于‎2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省内境外投资合作项目多51个.‎ ‎(1)求湖南省签订的境外,省外境内的投资合作项目分别有多少个?‎ ‎(2)若境外、省内境外投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在这次“中博会”中,东道湖南省共引进资金多少亿元?‎ ‎ ‎ ‎35.(2012•六盘水)为鼓励居民节约用水,某市决定对居民用水收费实行“阶梯价”,即当每月用水量不超过15吨时(包括15吨),采用基本价收费;当每月用水量超过15吨时,超过部分每吨采用市场价收费.小兰家4、5月份的用水量及收费情况如下表:‎ 月份 用水量(吨)‎ 水费(元)‎ ‎4‎ ‎22‎ ‎51‎ ‎5‎ ‎20‎ ‎45‎ ‎(1)求该市每吨水的基本价和市场价.‎ ‎(2)设每月用水量为n吨,应缴水费为m元,请写出m与n之间的函数关系式.‎ ‎(3)小兰家6月份的用水量为26吨,则她家要缴水费多少元?‎ ‎38.(2012•攀枝花)据媒体报道,近期“手足口病”可能进入发病高峰期,某校根据《学校卫生工作条例》,为预防“手足口病”,对教室进行“薰药消毒”.已知药物在燃烧机释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),根据图象所示信息,解答下列问题:‎ ‎(1)写出从药物释放开始,y与x之间的函数关系式及自变量的取值范围;‎ ‎(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?‎ ‎39.(2012•呼和浩特)如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(n,3)两点.‎ ‎(1)求一次函数的解析式;‎ ‎(2)根据图象直接写出时x的取值范围.‎ ‎ ‎ ‎40.(2012•湖州)如图1,已知菱形ABCD的边长为2,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(﹣,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.‎ ‎(1)求这条抛物线的函数解析式;‎ ‎(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<)‎ ‎①是否存在这样的t,使△ADF与△DEF相似?若存在,求出t的值;若不存在,请说明理由;‎ ‎②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)‎