- 123.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
大连市2011年初中毕业升学考试
数学
注意事项:
1.请在答题卡上作答,在试卷上作答无效。
2.本试卷共五大题,26小题,满分150分。考试时间120分钟。
一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)
1.-的相反数是 ( )
A.-2 B.- C. D.2
2.在平面直角坐标系中,点P(-3,2)所在象限为 ( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.实数的整数部分是 ( )
A.2 B.3 C.4 D.5
4.图1是由四个完全相同的正方体组成的几何体,这个几何体的左视图是 ( )
图1
A. B. C. D.
5.不等式组的解集是 ( )
A.-1≤x<2 B.-1<x≤2 C.-1≤x≤2 D.-1<x<2
6.下列事件是必然事件的是 ( )
A.抛掷一次硬币,正面朝上 B.任意购买一张电影票,座位号恰好是“7排8号”
C.某射击运动员射击一次,命中靶心 D.13名同学中,至少有两名同学出生的月份相同
7.某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则 ( )
图2
A.甲比乙的产量稳定 B.乙比甲的产量稳定
C.甲、乙的产量一样稳定 D.无法确定哪一品种的产量更稳定
8.如图2,矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,
则CF等于
图2
A. B.1 C. D.2
二、填空题(本题共8小题,每小题3分,共24分)
9.如图3,直线a∥b,∠1=115°,则∠2=_________°.
图3
10.在平面直角坐标系中,将点(-2,-3)向上平移3个单位,则平
移后的点的坐标为_______.
11.化简:=___________.
12.已知反比例函数的图象经过点(3,-4),则这个函数的解析式为___________.
13.某家用电器经过两次降价,每台零售价由350元下降到299元。若两次降价的百分率相同,设这个百分率为x,则可列出关于x的方程为_________.
图2
14.一个不透明的袋子中有2个红球、3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,它是红色球的概率为_________.
15.如图4,等腰直角三角形ABC的直角边AB的长为6cm,
将△ABC绕点A逆时针旋转15°后得到△AB′C′,则图
中阴影部分面积等于_________cm2.
图5
16.如图5,抛物线y=-x2+2x+m(m<0)与x轴相交于点A(x1,0)、
B(x2,0),点A在点B的左侧.当x=x2-2时,y______0(填
“>”“=”或“<”号).
三、解答题(本题共4小题,其中17、18、19题各9分,20题12
分,共39分)
17.计算:.
18.解方程:.
图6
19.如图6,等腰梯形ABCD中,AD∥BC,M是BC的中点,
求证:∠DAM=∠ADM.
20.如图7,某建筑物BC上有一旗杆AB,小明在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,小明的观测点与地面的距离EF为1.6m.
⑴求建筑物BC的高度;
⑵求旗杆AB的高度.
图7
A
B
C
E
F
(结果精确到0.1m.参考数据:≈1.41,sin52°≈0.79,tan52°≈1.28)
四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)
21.某中学为了了解七年级男生入学时的跳绳情况,随机选取50名刚入学的男生进行个人一分钟跳绳测试,并以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图(如图8所示).根据图表解答下列问题:
⑴a=_______,b=_________;
⑵这个样本数据的中位数落在第________组;
⑶若七年级男生个人一分钟跳绳次数x≥130时成绩为优秀,则从这50名男生中任意选一人,跳绳成绩为优秀的概率为多少?
2
6
10
12
14
20
16
18
50
70
90
110
130
150
170
跳绳次数
0
4
8
频数(人数)
图8
⑷若该校七年级入学时男生共有150人,请估计此时该校七年级男生个人一分钟跳绳成绩为优秀的人数.
组别
次数x
频数(人数)
第1组
50≤x<70
4
第2组
70≤x<90
a
第3组
90≤x<110
18
第4组
110≤x<130
b
第5组
130≤x<150
4
第6组
150≤x<170
2
图9
22.如图9,AB是⊙O的直径,CD是⊙O的切线,切点为C,BE⊥CD,垂足为E,连接AC、BC.
⑴△ABC的形状是______________,理由是_________________;
⑵求证:BC平分∠ABE;
⑶若∠A=60°,OA=2,求CE的长.
23.如图10,某容器由A、B、C三个长方体组成,其中A、B、C的底面积分别为25cm2、10cm2、5cm2,C的容积是容器容积的(容器各面的厚度忽略不计).现以速度v(单位:cm3/s)均匀地向容器注水,直至注满为止.图11是注水全过程中容器的水面高度h(单位:cm)与注水时间t(单位:s)的函数图象.
⑴在注水过程中,注满A所用时间为______s,再注满B又用了_____s;
O
t/s
h/cm
10
18
12
图11
⑵求A的高度hA及注水的速度v;
⑶求注满容器所需时间及容器的高度.
图10
A
B
C
五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)
24.如图12,在平面直角坐标系中,点A、B、C的坐标分别为(0,2)、(-1,0)、(4,0).P是线段OC上的一动点(点P与点O、C不重合),过点P的直线x=t与AC相交于点Q.设四边形ABPQ关于直线x=t的对称的图形与△QPC重叠部分的面积为S.
⑴点B关于直线x=t的对称点B′的坐标为________;
A
B
C
O
x
y
图12
⑵求S与t的函数关系式.
25.在△ABC中,∠A=90°,点D在线段BC上,∠EDB=∠C,BE⊥DE,垂足为E,DE与AB相交于点F.
⑴当AB=AC时,(如图13),
①∠EBF=_______°;
②探究线段BE与FD的数量关系,并加以证明;
⑵当AB=kAC时(如图14),求的值(用含k的式子表示).
图13
图14
26.如图15,抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,对称轴与抛物线相交于点P、与直线BC相交于点M,连接PB.
⑴求该抛物线的解析式;
⑵抛物线上是否存在一点Q,使△QMB与△PMB的面积相等,若存在,求点Q的坐标;若不存在,说明理由;
图15
⑶在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相等,若存在,直接写出点R的坐标;若不存在,说明理由.新课标第一网xkb1.com