- 111.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
中考数学复习直角三角形、勾股定理、面积
知识考点:
了解直角三角形的判定与性质,理解直角三角形的边角关系,掌握用勾股定理解某些简单的实际问题。它的有关性质广泛应用于线段计算、证明线段倍分关系、证明线段平方关系及与面积有关的问题等方面。
精典例题:
【例1】如图,在四边形ABCD中,∠A=600,∠B=∠D=900,BC=2,CD=3,则AB=?
分析:通过作辅助线,将四边形问题转化为三角形问题来解决,其关键是对内分割还是向外补形。
答案:
【例2】如图,P为△ABC边BC上一点,PC=2PB,已知∠ABC=450,∠APC=600,求∠ACB的度数。
分析:本题不能简单地由角的关系推出∠ACB的度数,而应综合运用条件PC=2PB及∠APC=600来构造出含300角的直角三角形。这是解本题的关键。
答案:∠ACB=750(提示:过C作CQ⊥AP于Q,连结BQ,则AQ=BQ=CQ)
探索与创新:
【问题一】如图,公路MN和公路PQ在点P处交汇,且∠QPN=300,点A处有一所中学,AP=160米,假设汽车行驶时,周围100米以内会受到噪声的影响,那么汽车在公路MN上沿PN方向行驶时,学校是否会受到噪声的影响?如果受影响,已知汽车的速度为18千米/小时,那么学校受影响的时间为多少秒?
分析:从学校(A点)距离公路(MN)的最近距离(AD=80米)入手,在距A点方圆100米的范围内,利用图形,根据勾股定理和垂径定理解决它。
略解:作AD⊥MN于D,在Rt△ADP中,易知AD=80。所以这所学校会受到噪声的影响。以A为圆心,100米为半径作圆交MN于E、F,连结AE、AF,则AE=AF=100,根据勾股定理和垂径定理知:ED=FD=60,EF=120,从而学校受噪声影响的时间为:
(小时)=24(秒)
评注:本题是一道存在性探索题,通过给定的条件,判断所研究的对象是否存在。
【问题二】台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.如图12,据气象观测,距沿海某城市A的正南方向220千米的B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东300方向往C移动,且台风中心风力不变。若城市所受风力达到或超过四级,则称为受台风影响。
(1)该城市是否会受到这次台风的影响? 请说明理由。
(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?
(3)该城市受到台风影响的最大风力为几级?
解:(1)如图1,由点A作AD⊥BC,垂足为D。
∵AB=220,∠B=30°∴AD=110(千米)。
由题意知,当A点距台风中心不超过160千米时,将会受到台风的影响。故该城市会受到这次台风的影响。
(2)由题意知,当A点距台风中心不超过160千米时,将会受到台风的影响。则AE=AF=160。当台风中心从E处移到F处时,该城市都会受到这次台风的影响。由勾股定理得:。∴EF=60(千米)。
∵该台风中心以15千米/时的速度移动。∴这次台风影响该城市的持续时间为
(小时)。
(3)当台风中心位于D处时,A市所受这次台风的风力最大,其最大风力为12-=6.5(级)。
评注:本题是一道几何应用题,解题时要善于把实际问题抽象成几何图形,并领会图形中的几何元素代表的意义,由题意可分析出,当A点距台风中心不超过160千米时,会受台风影响,若过A作AD⊥BC于D,设E,F分别表示A市受台风影响的最初,最后时台风中心的位置,则AE=AF=160;当台风中心位于D处时,A市受台风影响的风力最大。
跟踪训练:
一、填空题:
1、如果直角三角形的边长分别是6、8、,则的取值范围是 。
2、如图,D为△ABC的边BC上的一点,已知AB=13,AD=12,,BD=5,AC=BC,则BC= 。
3、如图,四边形ABCD中,已知AB∶BC∶CD∶DA=2∶2∶3∶1,且∠B=900,则∠DAB= 。
4、等腰△ABC中,一腰上的高为3cm,这条高与底边的夹角为300,则= 。
5、如图,△ABC中,∠BAC=900,∠B=2∠C,D点在BC上,AD平分∠BAC,若AB=1,则BD的长为 。
6、已知Rt△ABC中,∠C=900,AB边上的中线长为2,且AC+BC=6,则= 。
7、如图,等腰梯形ABCD中,AD∥BC,腰长为8cm,AC、BD相交于O点,且∠AOD=600,设E、F分别为CO、AB的中点,则EF= 。
8、如图,点D、E是等边△ABC的BC、AC上的点,且CD=AE,AD、BE相交于P点,BQ⊥AD。已知PE=1,PQ=3,则AD= 。
9、如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A、B、C、D的面积的和是 。
二、选择题:
1、如图,已知△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP中( )
A、全部正确 B、仅①和②正确 C、仅①正确 D、仅①和③正确
2、如果一个三角形的一条边的长是另一条边的长的2倍,并且有一个角是300,那么这个三角形的形状是( )
A、直角三角形 B、钝角三角形 C、锐角三角形 D、不能确定
3、在四边形ABCD中,AD⊥CD,AB=13,BC=12,CD=4,AD=3,则∠ACB的度数是( )
A、大于900 B、小于900 C、等于900 D、不能确定
4、如图,已知△ABC中,∠B=900,AB=3,BC=,OA=OC=,则∠OAB的度数为( )
A、100 B、150 C、200 D、250
三、解答题:
1、阅读下面的解题过程:已知、、为△ABC的三边,且满足
,试判断△ABC的形状。
解:∵……①
∴……②
∴……③
∴△ABC是直角三角形。
问:(1)上述解题过程中,从哪一步开始出现错误?请写出该步的代号 ;
(2)错误的原因是 ;
(3)本题的正确结论是 。
2、已知△ABC中,∠BAC=750,∠C=600,BC=,求AB、AC的长。
3、如图,△ABC中,AD是高,CE是中线,DC=BE,DG⊥CE于G。
(1)求证:G是CE的中点;
(2)∠B=2∠BCE。
4、如图,某校把一块形状近似于直角三角形的废地开辟为生物园,∠ACB=900,BC=60米,∠A=360。
(1)若入口E在边AB上,且与A、B等距离,请你在图中画出入口E到C点的最短路线,并求最短路线CE的长(保留整数);
(2)若线段CD是一条水渠,并且D点在边AB上,已知水渠造价为50元/米,水渠路线应如何设计才能使造价最低?请你画出水渠路线,并求出最低造价。
参考数据:sin360=0.5878,sin540=0.8090
5、已知△ABC的两边AB、AC的长是方程的两个实数根,第三边BC=5。
(1)为何值时,△ABC是以BC为斜边的直角三角形;
(2)为何值时,△ABC是等腰三角形,求出此时其中一个三角形的面积。
参考答案
一、填空题:
1、10或;2、16.9;3、1350;4、cm2;5、;6、5;7、4
8、7;9、49
二、选择题:BDCB
三、解答题:
1、(1)③;(2)略;(3)直角三角形或等腰三角形
2、提示:过A作AD⊥BC于D,则AB=,AC=
3、提示:连结ED
4、(1)51米;(2)若要水渠造价最低,则水渠应与AB垂直,造价2427元。
5、(1)2;(2)=4或3,当=4时,面积为12。