- 276.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
方程与不等式——分式方程1
一.选择题(共9小题)
1.已知关于x的分式方程+=1的解是非负数,则m的取值范围是( )
A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3
2.分式方程的解是( )
A.x=﹣2 B.x=2 C.x=1 D.x=1或x=2
3.已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是( )
A.5 B.1 C.3 D.不能确定
4.分式方程的解为( )
A.1 B.2 C.3 D.4
5.将分式方程1﹣=去分母,得到正确的整式方程是( )
A.1﹣2x=3 B.x﹣1﹣2x=3 C.1+2x=3 D.x﹣1+2x=3
6.方程﹣=0解是( )
A.x= B.x= C.x= D.x=﹣1
7.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是( )
A. B. C. D.
8.已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的是( )
A. B. C. D.
9.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天的工作效率比原计划提高20%,结果提前2天完成任务.设原计划每天铺设x米,下面所列方程正确的是( )
A.﹣=2 B.﹣=2 C.﹣=2 D.=
二.填空题(共8小题)
10.当m _________ 时,方程=无解.
11.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是 _________ .
12.方程的解是 _________ .
13.分式方程﹣=1的解是 _________ .
14.若代数式和的值相等,则x= _________ .
15.若关于x的方程﹣1=0有增根,则a的值为 _________ .
16.若分式方程﹣=2有增根,则这个增根是 _________ .
17.有两块面积相同的蔬菜试验田,第一块使用原品种,第二块使用新品种,分别收获蔬菜1500千克和2100千克.已知第二块试验田每亩的产量比第一块多200千克.若设第一块试验田每亩的产量为x千克,则根据题意列出的方程是 _________ .
三.解答题(共9小题)
18.解方程:.
19.解方程:.
20.解方程:=1.
21.解分式方程:+=3.
22某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.
(1)该种干果的第一次进价是每千克多少元?
(2)超市销售这种干果共盈利多少元?
23.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?
24.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.
25.国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获得补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?
26.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?
方程与不等式——分式方程1
参考答案与试题解析
一.选择题(共9小题)
1.已知关于x的分式方程+=1的解是非负数,则m的取值范围是( )
A. m>2 B.m≥2 C.m≥2且m≠3 D. m>2且m≠3
考点: 分式方程的解.
专题: 计算题.
分析: 分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的范围即可.
解答: 解:分式方程去分母得:m﹣3=x﹣1,
解得:x=m﹣2,
由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,
解得:m>2且m≠3.
故选:C
点评: 此题考查了分式方程的解,时刻注意分母不为0这个条件.
2.分式方程的解是( )
A. x=﹣2 B.x=2 C.x=1 D. x=1或x=2
考点: 解分式方程.
专题: 计算题.
分析: 观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
解答: 解:方程的两边同乘(x﹣2),得
2x﹣5=﹣3,
解得x=1.
检验:当x=1时,(x﹣2)=﹣1≠0.
∴原方程的解为:x=1.
故选:C.
点评: 考查了解分式方程,注意:
(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.
(2)解分式方程一定注意要验根.
3.已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是( )
A. 5 B 1 C.3 D. 不能确定
考点: 解分式方程;关于原点对称的点的坐标.
专题: 计算题.
分析: 根据P关于原点对称点在第一象限,得到P横纵坐标都小于0,求出a的范围,确定出a的值,代入方程计算即可求出解.
解答: 解:∵点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,
∴,
解得:<a<2,即a=1,
当a=1时,所求方程化为=2,
去分母得:x+1=2x﹣2,
解得:x=3,
经检验x=3是分式方程的解,
则方程的解为3.
故选:C
点评: 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
4.分式方程的解为( )
A. 1 B.2 C3 D. 4
考点: 解分式方程.
专题: 计算题.
分析: 分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解答: 解:去分母得:5x=3x+6,
移项合并得:2x=6,
解得:x=3,
经检验x=3是分式方程的解.
故选:C.
点评: 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
5.将分式方程1﹣=去分母,得到正确的整式方程是( )
A. 1﹣2x=3 B.x﹣1﹣2x=3 C.1+2x=3 D. x﹣1+2x=3
考点: 解分式方程.
专题: 计算题.
分析: 分式方程两边乘以最简公分母x﹣1,即可得到结果.
解答: 解:分式方程去分母得:x﹣1﹣2x=3,
故选:B.
点评: 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
6.方程﹣=0解是( )
A. x= B.x= C.x= D. x=﹣1
考点: 解分式方程.
专题: 计算题.
分析: 分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解答: 解:去分母得:3x+3﹣7x=0,
解得:x=,
经检验x=是分式方程的解.
故选:B.
点评: 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
7.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是( )
A. B. C. D.
考点: 由实际问题抽象出分式方程.
分析: 题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.
解答: 解:根据题意,得
.
故选:C.
点评: 理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.
8.已知A、C两地相距40千米,B、C两地相距50千米,甲乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米,则两车同时到达C地.设乙车的速度为x千米/小时,依题意列方程正确的是( )
A. B. C. D.
考点: 由实际问题抽象出分式方程.
专题: 行程问题.
分析: 设乙车的速度为x千米/小时,则甲车的速度为(x﹣12)千米/小时,根据用相同的时间甲走40千米,乙走50千米,列出方程.
解答: 解:设乙车的速度为x千米/小时,则甲车的速度为(x﹣12)千米/小时,
由题意得,=.
故选:B.
点评: 本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.
9.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天的工作效率比原计划提高20%,结果提前2天完成任务.设原计划每天铺设x米,下面所列方程正确的是( )
A. ﹣=2 B. ﹣=2
C. ﹣=2 D. =
考点: 由实际问题抽象出分式方程.
分析: 设原计划每天铺设x米,则实际施工时每天铺设(1+20%)x米,根据实际施工比原计划提前2天完成,列出方程即可.
解答: 解:设原计划每天铺设x米,则实际施工时每天铺设(1+20%)x米,
由题意得,﹣=2.
故选:A.
点评: 本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.
二.填空题(共8小题)
10.当m =2 时,方程=无解.
考点: 分式方程的解.
专题: 计算题.
分析: 按照一般步骤解方程,用含有m的式子表示x,因为无解,所以x是能使最简公分母为0的值,从而求出m.
解答: 解:原方程化为整式方程得,x﹣1=m
因为无解即有增根,
∴x﹣3=0,
∴x=3,
当x=3时,m=3﹣1=2.
点评: 增根问题可按如下步骤进行:
①让最简公分母为0确定增根;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.
11.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是 k>且k≠1 .
考点: 分式方程的解.
专题: 计算题.
分析: 分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据解为负数确定出k的范围即可.
解答: 解:去分母得:(x+k)(x﹣1)﹣k(x+1)=x2﹣1,
去括号得:x2﹣x+kx﹣k﹣kx﹣k=x2﹣1,
移项合并得:x=1﹣2k,
根据题意得:1﹣2k<0,且1﹣2k≠±1
解得:k>且k≠1
故答案为:k>且k≠1.
点评: 此题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为0.
12.方程的解是 x=2 .
考点: 解分式方程.
专题: 计算题.
分析: 观察可得最简公分母是x(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
解答: 解:方程的两边同乘x(x+2),得
2x=x+2,
解得x=2.
检验:把x=2代入x(x+2)=8≠0.
∴原方程的解为:x=2.
故答案为:x=2.
点评: 本题考查了分式方程的解法,注:
(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.
(2)解分式方程一定注意要验根.
13.分式方程﹣=1的解是 x=﹣1.5 .
考点: 解分式方程.
专题: 计算题.
分析: 分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解答: 解:去分母得:x(x+2)﹣1=x2﹣4,
整理得:x2+2x﹣1=x2﹣4,
移项合并得:2x=﹣3
解得:x=﹣1.5,
经检验x=﹣1.5是分式方程的解.
故答案为:x=﹣1.5
点评: 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
14.若代数式和的值相等,则x= 7 .
考点: 解分式方程.
专题: 计算题;转化思想.
分析: 根据题意列出分式方程,求出分式方程的解得到x的值,经检验即可得到分式方程的解.
解答: 解:根据题意得:=,
去分母得:2x+1=3x﹣6,
解得:x=7,
经检验x=7是分式方程的解.
故答案为:x=7.
点评: 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
15.若关于x的方程﹣1=0有增根,则a的值为 ﹣1 .
考点: 分式方程的增根.
分析: 增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出未知字母的值.
解答: 解:方程两边都乘(x﹣1),得
ax+1﹣(x﹣1)=0,
∵原方程有增根
∴最简公分母x﹣1=0,即增根为x=1,
把x=1代入整式方程,得a=﹣1.
点评: 增根问题可按如下步骤进行:
①让最简公分母为0确定增根;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.
16.若分式方程﹣=2有增根,则这个增根是 x=1 .
考点: 分式方程的增根.
专题: 计算题.
分析: 根据分式方程有增根,让最简公分母为0确定增根,得到x﹣1=0,求出x的值.
解答: 解:根据分式方程有增根,得到x﹣1=0,即x=1,
则方程的增根为x=1.
故答案为:x=1
点评: 此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
17.有两块面积相同的蔬菜试验田,第一块使用原品种,第二块使用新品种,分别收获蔬菜1500千克和2100千克.已知第二块试验田每亩的产量比第一块多200千克.若设第一块试验田每亩的产量为x千克,则根据题意列出的方程是 = .
考点: 由实际问题抽象出分式方程.
分析: 设第一块试验田每亩的产量为x千克,则第二块试验田每亩的产量为(x+200)千克,根据两块地的面积相同,列出分式方程.
解答: 解:设第一块试验田每亩的产量为x千克,则第二块试验田每亩的产量为(x+200)千克,
由题意得,=.
故答案为;=.
点评: 本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出分式方程.
三.解答题(共9小题)
18.解方程:.
考点: 解分式方程.
专题: 计算题.
分析: 本题的最简公分母是3(x+1),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.
解答: 解:方程两边都乘3(x+1),
得:3x﹣2x=3(x+1),
解得:x=﹣,
经检验x=﹣是方程的解,
∴原方程的解为x=﹣.
点评: 当分母是多项式,又能进行因式分解时,应先进行因式分解,再确定最简公分母.分式方程里单独的一个数和字母也必须乘最简公分母.
19.解方程:.
考点: 解分式方程.
专题: 计算题.
分析: 观察可得最简公分母是(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
解答: 解:方程的两边同乘(x+1)(x﹣1),得
x(x+1)+1=x2﹣1,
解得x=﹣2.
检验:把x=﹣2代入(x+1)(x﹣1)=3≠0.
∴原方程的解为:x=﹣2.
点评: 本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.
(2)解分式方程一定注意要验根.
20.解方程:=1.
考点: 解分式方程.
专题: 计算题.
分析: 分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解答: 解:去分母得:x(x﹣1)﹣4=x2﹣1,
去括号得:x2﹣x﹣4=x2﹣1,
解得:x=﹣3,
经检验x=﹣3是分式方程的解.
点评: 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.
21.解分式方程: +=3.
考点: 解分式方程.
专题: 计算题.
分析: 分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解答: 解:去分母得:x﹣2=3x﹣3,
解得:x=,
经检验x=是分式方程的解.
点评: 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
22.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.
(1)该种干果的第一次进价是每千克多少元?
(2)超市销售这种干果共盈利多少元?
考点: 分式方程的应用.
专题: 销售问题.
分析: (1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元.根据第二次购进干果数量是第一次的2倍还多300千克,列出方程,解方程即可求解;
(2)根据利润=售价﹣进价,可求出结果.
解答: 解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,
由题意,得=2×+300,
解得x=5,
经检验x=5是方程的解.
答:该种干果的第一次进价是每千克5元;
(2)[+﹣600]×9+600×9×80%﹣(3000+9000)
=(600+1500﹣600)×9+4320﹣12000
=1500×9+4320﹣12000
=13500+4320﹣12000
=5820(元).
答:超市销售这种干果共盈利5820元.
点评: 本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.
23.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?
考点: 分式方程的应用.
专题: 工程问题.
分析: 设甲队每天完成x米2,乙队每天完成1.5x米2.则依据“乙队单独干比甲队单独干能提前15天完成任务”列出方程.
解答: 解:设甲队每天完成x米2,乙队每天完成1.5 x米2,根据题意得.
﹣=15,
解得x=160,
经检验,x=160,是所列方程的解.
答:甲队每天完成160米2.
点评: 本题考查了分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.
24.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.
考点: 分式方程的应用.
专题: 工程问题.
分析: 根据题意设出该文具厂原计划每天加工x套这种画图工具,再根据已知条件列出方程即可求出答案.
解答: 解:设文具厂原计划每天加工x套这种画图工具.
根据题意,得﹣=4.
解得 x=125.
经检验,x=125是原方程的解,且符合题意.
答:文具厂原计划每天加工125套这种画图工具.
点评: 本题主要考查了如何由实际问题抽象出分式方程,在解题时要能根据题意找出等量关系列出方程是本题的关键.
25.国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获得补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?
考点: 分式方程的应用.
专题: 应用题.
分析: 设该款空调补贴前的售价为每台x元,根据补贴后可购买的台数比补贴前前多20%,可建立方程,解出即可.
解答: 解:设该款空调补贴前的售价为每台x元,
由题意,得:×(1+20%)=,
解得:x=3000.
经检验得:x=3000是原方程的根.
答:该款空调补贴前的售价为每台3000元.
点评: 本题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.
26.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?
考点: 分式方程的应用.
专题: 应用题.
分析: 设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,等量关系:动车行驶360km与特快列车行驶(360﹣135)km所用的时间相同,列方程求解.
解答: 解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,
由题意,得:=,
解得:x=90,
经检验得:x=90是这个分式方程的解.
x+54=144.
答:特快列车的平均速度为90km/h,动车的速度为144km/h.
点评: 本题考查了分式方程的应用,解答本题的关键是仔细审题,得到等量关系:动车行驶360km与特快列车行驶(360﹣135)km所用的时间相同.