- 943.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2016 年南京市中考模拟数学测试卷(鼓楼一模)
全卷满分 120 分.考试时间为 120 分钟.
一、选择题(本大题共 6 小题,每小题 2 分,共 12 分.)
1.比-1 大的无理数是
C.22
.
.-
D
.-
2
A 3.14
B
2
7
2
2.一组数据 4,5,3,4,4 的中位数、众数和方差分别是
A.3,4,0.4
B.4,4,4.4
C.4,4,0.4
D.4,3,0.4
3.计算 x2·x3÷x 的结果是
A.x4
B.x5
C.x6
D.x7
A
D
4.如图,菱形 ABCD 中,AB=5,BD=6,则菱形的高为
A.12
B.24
C.12
D.24
5
5
5.用一张半径为 20 的扇形纸片制成一个圆锥(接缝忽略不计),
B
C
如果圆锥底面的半径为 10,那么扇形的圆心角为
(第 4 题)
A.60°
B.90°
C.135°
D.180°
6.等腰直角△ABC 中,∠BAC=90°,BC=8,⊙O 过点 B,C,点 O 在△ABC 的外部,且
OA=1,则⊙O 的半径为
A.4
B.5
C.
41
D.4
2
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.)
7.16 的平方根是
▲
, 9 的立方根是
▲.
8.2016 年 3 月,鼓楼区的二手房均价约为 25000 元/m2,若以均价购买一套 100m2 的二手房,
该套房屋的总价用科学记数法表示为 ▲ 元.
9.因式分解:3a3-12a= ▲ .
10.为了估计鱼塘里青鱼的数量(鱼塘内只有青鱼),将 200 条鲤鱼放进鱼塘,随机捞出一条
鱼,记下品种后放回,稍后再随机捞出一条鱼记下品种,多次重复后发现鲤鱼出现的频率约
为 0.2,那么可以估计鱼塘里青鱼的数量大约为 ▲ 条.
11.计算18a2-2a2(a≥0)的结果是 ▲ .
12.点 A(x1,y1),B(x2,y2)是反比例函数 y=-2x图像上的两点,若 x1>x2>0,则 y1 ▲ y2.(填
“>”、“=”或“<”)
13.如图,将一张矩形纸片沿 EF 折叠后,点 D、C 分别落在点 D′、C′的位置,若∠1=40°,则∠D′EF= ▲ .
14.若△ABC 的三边长分别为 6、8、10,则△ABC 的内切圆半径为 ▲ .
15.已知 y 是 x 的二次函数,函数 y 与自变量 x 的部分对应值如下表:
x
…
-2
-1
0
1
2
…
y
…
0
4
6
6
4
…
该二次函数图像向左平移 ▲ 个单位长度,图像经过原点.
16.如图,在平面直角坐标系中,点 A、B 的坐标分别为(0,1)和(3,0),若在第四象限
存在点 C,使△OBC 和△OAB 相似,则点的 C 坐标是
▲
.
E
D
y
A
A
D′
B
1 F
C
O
Bx
(第 13 题)
C′
(第 16 题)
三、解答题(本大题共 11 小题,共 88 分.请在答题卡指定区域内作答,解答时应写出文字说
.......
明、证明过程或演算步骤)
17.(5 分)计算:(x-3)(3+x)-(x2+x-1).
18.(7 分)(1)解不等式:3(2x+5)>2(4x+3),并将其解集表示在数轴上.
(2)写出一个一元一次不等式,使它和(1)中的不等式组成的不等式组的解集为 x≤2,这个不等式可以是 ▲ .
19.(7 分)(1)解方程:
2
=
4
;
2x-1
4x2-1
20.(7 分)网易新闻的“数读”
专栏旨在用数据说话,提供轻
量化的阅读体验.近日,网易
新闻对部分国家教师职业情
况进行了调查,提供了如下的
一幅统计图,请你阅读这幅图
并回答下面的问题.
(1)该调查的方式属于 ▲
(填“抽样调查”或“普查”)
(2)图中展示了亚洲国家“中
国、日本、韩国、印度、印尼、
土耳其、以色列”和欧洲国家
“捷克、英国、西班牙、瑞士、
芬兰、匈牙利、意大利、希腊、
德国、荷兰、瑞典、葡萄牙、比利时、法国”的教师平均年
薪,你估计两组数据的方差哪
一个小?
(3)请选择一个亚洲国家、
一个欧洲国家,结合图中数
据,写出你对这两个国家的教师职业的评价.
(2)方程
2x-1
=
4x2-1
的解为
▲
.
2
4
21.(9 分)如图,在□ABCD 中,E、F 为 AD 上两点,AE=EF=FD,连接 BE、CF 并延长,交于点 G,且 GB=GC.
(1)求证:四边形 ABCD 是矩形;
G
(2)若△GEF 的面积为 2.
①求四边形 BCFE 的面积;
A
E
F
D
②四边形 ABCD 的面积为 ▲ .
B
C
(第 21 题)
22.(8 分)(1)甲乙两只不透明的袋子中各装有完全相同的 3 个球,甲袋中的 3 个球分别标
上数字 1、2、3,乙袋中的 3 个球分别标上数字 4、5、6.分别从两只袋子中各摸出一个球,
求摸到的两球的标号之和为奇数的概率;
(2)请利用一枚质地均匀的小正方体设计一个试验,使试验结果的概率与(1)中相同.(友情提醒:1.说明小正方体的每个面的数字.2.叙述试验方案,不需说明理由.)
23.(8 分)为了测量校园内旗杆 AB 的高度,小明和小丽同学分别采用了如下方案.
(1)小明的方案:如图 1,小明在地面上点 C 处观测旗杆顶部,测得仰角∠ACB=45°,然后他向旗杆反方向前进 20 米,此时在点 D 处观测旗杆顶部,测得仰角∠ADB=26.6°.请根据小明的方案求旗杆 AB 的高度;
(2)小丽的方案:如图 2,小丽在地面上点 C 处观测旗杆顶部,测得仰角∠ACB=45°,然后从点 C 爬到 10 米高的楼上点 E 处(CE⊥BC),此时在观测旗杆顶部,测得仰角∠AEF=α.根据小丽的方案所求旗杆 AB 的高度为 ▲ 米.(用含α的式子表示)
(参考数据:sin26.6°≈0.45,tan26.6°≈0.50)
A A
F E
B
C
D
B
C
(图 1)
(图 2)
(第 23 题)
24.(8 分)大客车和轿车同时从甲地出发,沿笔直的公路以各自的速度匀速驶往乙地,轿车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距 180 千米,大客车的速度为 60 千米/小时,轿车的速度为 90 千米/小时.设大客车和轿车出发 x 小时后,两车离乙地的距离分别为 y1 和 y2 千米.
(1)分别求出 y1 和 y2 与 x 之间的函数关系式;(2)在同一平面直角坐标系中画出 y1 和 y2 的函数图像,并标上必要的数据.
y
O x
(第 24 题)
25.(8 分)某公司批发一种服装,进价 120 元/件,批发价 200 元/件.公司对大量购买有优惠政策,凡是一次性购买 20 件以上的,每多买 1 件,批发价降低 1 元.设顾客购买 x(件)时公司的利润为 y(元).
(1)当一次性购买 x 件(x>20)时,
①批发价为 ▲ 元/件;
②求 y(元)与 x(件)之间的函数表达式;(2)设批发价为 a 元/件,求 a 在什么范围内才能保证公司每次卖的越多,利润也越多.
26.(11 分)如图,已知⊙O 的半径是 4cm,弦 AB=42cm,AC 是⊙O 的切线,且 AC=4cm,
连接 BC.
(1)证明:BC 是⊙O 的切线;
(2)把△ABC 沿射线 CO 方向平移 dcm(d>0),使△ABC 的边所在直线与⊙O 相切,求 d
的值.
A
A
C
O
C
O
B
B
(第 26 题)
(备用图)
27.(10 分)如图,正方形 ABCD、BGFE 边长分别为 2、1,正方形 BGFE 绕点 B 自由旋转,直线 AE、GC 相交于点 H.
(1)在正方形 BGFE 绕点 B 旋转过程中,∠AHC 的大小是否始终为 90°,请说明理由;(2)连接 DH、BH,在正方形 BGFE 绕点 B 旋转过程中,①求 DH 的最大值;②直接写出 DH 的最小值.
A
D
A
D
A
D
E
B
F
B
B
C
C
C
G
H
(第 27 题)
(备用图)
数学试题参考答案及评分标准
说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.
一、选择题(本大题共 6 小题,每小题 2 分,共 12 分.)
题号
1
2
3
4
5
6
答案
D
C
A
B
D
C
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.)
7. ±4,3
8.2.5×106
9.3a(a+2)( a-2)
10.800
11.2
2
a
9
12.>
13.7014.2
15.3
16.( 43,-34),(343,-34),(3,-1),(3,-3)
三、解答题(本大题共 11 小题,共 88 分.)
17.(5 分)
解:原式=x2-9-x2-x+1…………………………………………………………………3 分=-x-8.…………………………………………………………………………5 分
18.(7 分)
解:(1)6 x+15>8x+6,……………………………………………………………………2 分2x<9,……………………………………………………………………3 分
x<4.5.…………………………………………………………………4 分数轴表示略.…………………………………………………………………………………5 分(2)x≤2 等答案不唯一.…………………………………………………………………7 分
19.(7 分)
解:(1)
2
=
4
,………………………………………………………1
分
2x-1(2 x+1) (2 x-1)
2(2 x+1)=4,…………………………………………………………………3
分
2 x+1=2,
2 x=1,
解得 x=12.……………………………………………………………………4 分
检验:当 x=12时,4x2-1=0,∴x=12是增根,原方程无解.……………………………5 分
(2)x1=x2=12(或写成 x=12)…………………………………………………………………7 分
20.(7 分)
(1)抽样调查;………………………………………………………………………………2 分
(2)欧洲国家方差小;………………………………………………………………………4 分
(3)回答时要根据数据从三方面回答.……………………………………………………7 分
21.(9 分)
(1)证明:∵GB=GC,
∴∠GBC=∠GCB.……………………………………………………………………………1 分
在□ABCD 中,AD∥BC,AB=DC,AB∥DC,∴∠GEF=∠GFE.∴GE=GF.∴GB-GE=GC-GF.
即 BE=CF.……………………………………………………………………………………2 分
∵AE=FD,
∴△ABE≌△DCF.…………………………………………………………………………3 分∴∠A=∠D.
∵AB∥DC,
∴∠A+∠D=180°.………………………………………………………………………4 分∴∠A=∠D=90°.
∴□ABCD 是矩形.…………………………………………………………………………5 分
(2)①∵EF//BC,
∴△GEF∽△GBC.
∵EF=13AD,AD=BC,∴BCEF=13.
∴S△GEF=1.…………………………………………………………………………6 分
S△GBC 9
∵S△GEF=2,∴S△GBC=18.
∴S 四边形 BCFE=16.…………………………………………………………………………7 分②24.……………………………………………………………………………………9 分
22.(8 分)
(1)列表或画树状图略……………………………………………………………………2 分
一共有 9 种等可能的结果,其中摸到的球上标号之和为奇数的情况有 5 种,
∴摸到的球上标号之和为奇数的概率为59…………………………………………………4 分
(2)略.……………………………………………………………………………………8 分
23.(8 分)(1)在 Rt△ABC 中,∠ACB=45°,
∴AB=BC.……………………………………………………………………………………1 分
在 Rt△ABD 中,∠ADB=26.6°,
∴tan26.6°=AB= AB = AB .………………………………………………………3 分
BD BC+CD AB+20
∴AB=20×tan26.6°.1-tan26.6°
∴AB≈20m.…………………………………………………………………………………4 分答:略.…………………………………………………………………………………5 分
(2)AB= 10 .……………………………………………………………………8 分1-tanα
24.(8 分).
解:(1)y1=180-60x………………………………………………………………………2 分
当 0≤x≤2 时
y2=180-90x………………………………………………………………………4 分
当 2≤x≤4 时
y2=90(x-2)=90x-180………………………………………………………………6 分(2)正确画出图像及标数据…………………………………………………………………8 分
y
180
90
O
1234x
25. (8 分)
(第 24 题)
(1)①220-x………………………………………………………………………………2 分②y=x(220-x-120)=-x2+100x……………………………………………………4 分
(2)①当 0<x≤20 时,y= (200-120) x=80x,y 随 x 的增大而增大,此时 a=200 元/件;
…………………………………………………………………………………………………5 分
②当 x>20 时,由(1)得 y=-x2+100x=-(x-50)2+2500,…………………………6 分
当 20<x<50 时,y 随 x 的增大而增大,当 x>50 时,y 随 x 的增大而减小,所以只有 20<x<50 时,才每次卖的越多,利润也越多,由题意 a=220-x,a 随 x 的增大而减小,
当 x=50 时,a=170,所以当每次卖的越多,利润也越多时,a≥170,又因为 a<200,所以 170≤a<200.………………………………………………………………………………7 分综上所述,170≤a≤200.……………………………………………………………………8 分
26.(11 分)
解:(1)连接 OA、OB,作 OD⊥AB 于点 D ∵AC 是⊙O 的切线
∴OA⊥AC,即∠OAC=90°…………………………………………………………………1 分
∵OD⊥AB
∴AD=12AB=12×42=22…………………………………………………………………2 分
在 RT△OAD 中,ADOA=242= 22
∴∠AOD=45°
同理可得∠BOD=45°
∴∠BOA=90°…………………………………………………………………………………3 分
∴∠OAC+∠BOA=180°
∴AC∥OB ∵AC=OB=4
∴四边形 OABC 是平行四边形………………………………………………………………4 分
又∵∠OAC=90°
∴四边形 OABC 是矩形
∴∠OBC=90°,即 OB⊥BC…………………………………………………………………5 分
∵点 B 在⊙O 上
∴BC 是⊙O 的切线…………………………………………………………………………6 分
(2)当 AB 边与⊙O 相切时,位置为△A′B′C′,平移的距离 d 为 4+2
2
.……………8 分
当边 AC、BC 所在直线与⊙O 相切时,位置为△A′′B′′C′′,
则 OE⊥B′′E,OF⊥A′′F,
A
E A′
A′′
C
DO C′
C′′
∴∠OEC′′=∠OFC′′=90°.
B′′
∵∠EC′′F=∠A′′C′′B′′=90°,
B
F B′
∴四边形 EOFC′′是矩形.…………………………………
…………………………9 分
∵OE=OF,
∴矩形 EOFC′′是正方形.…………………………………………………………………10 分∴平移的距离 d 为 42+42=82.……………………………………………………11 分27.(10 分)
解:(1)是.理由如下:
由旋转知,∠ABE=∠CBG,
在正方形 ABCD、BGFE 中AB=BC,BE=BG,∠ADC=∠BCD=∠BAD=∠ABC =90°.
∴△ABE≌△CBG.…………………………………………………………………………2 分
∴∠BAE=∠BCG.∵∠APB=∠CPH,∠ABC+∠BAE+∠APB=180°,∠AHC+∠BCG+∠CPH=180°,∴∠AHC=∠ABC =90°.……………………………………………………4 分
(2)①∵∠AHC=90°,
∴点 H 在以 AC 为直径的圆上.…………………………5 分
由(1)∠ABC=∠ADC=90°,
A
D
∴点 B、D 也在以 AC 为直径的圆上.…………………6
分
即点 A、B、H、C、D 在以 AC 为直径的同一个圆上,
∵在正方形 ABCD 中,∠BCD=90°,
E
∴BD 也为这个圆的直径.………………………………7
分
当 H 与点 B 重合时,DH 最大为 2
2
.………………8 分
P
F
② 6 .
…………………………………10 分
B
C
H
G