- 88.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
一元一次方程及其应用
一、选择题
1.
(2019•湖北恩施•3分)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )
A.不盈不亏 B.盈利20元 C.亏损10元 D.亏损30元
【分析】设两件衣服的进价分别为x、y元,根据利润=销售收入﹣进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用240﹣两件衣服的进价后即可找出结论.
【解答】解:设两件衣服的进价分别为x、y元,
根据题意得:120﹣x=20%x,y﹣120=20%y,
解得:x=100,y=150,
∴120+120﹣100﹣150=﹣10(元).
故选:C.
【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.
3. (2019•甘肃白银,定西,武威•3分) 已知,下列变形错误的是( )
A. B. C. D.
【答案】B
【解析】【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.
【解答】由得,3a=2b,
A. 由得,所以变形正确,故本选项错误;
B. 由得3a=2b,所以变形错误,故本选项正确;
C. 由可得,所以变形正确,故本选项错误;
D.3a=2b变形正确,故本选项错误.
故选B.
二.填空题
1. (2019•四川成都•3分)已知 ,且 ,则 a的值为________.
【答案】12
【考点】解一元一次方程,比例的性质
【解析】【解答】解:设 则a=6k,b=5k,c=4k
∴6k+5k-8k=6,解之:k=2
∴a=6×2=12
故答案为:12
【分析】设 ,分别用含k的式子表示出a、b、c的值,再根据 ,建立关于k的方程,求出k的值,就可得出a的值。
三.解答题
1.
(2019•安徽•分) 《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.
【答案】城中有75户人家.
【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.
【详解】设城中有x户人家,由题意得
x+x=100,
解得x=75,
答:城中有75户人家.
【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键.
2.(2019年四川省内江市)某商场计划购进A,B两种型号的手机,已知每部A型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是2100元.
(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求A、B两种型号的手机每部进价各是多少元?
(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍.
①该商场有哪几种进货方式?
②该商场选择哪种进货方式,获得的利润最大?
【考点】FH:一次函数的应用;9A:二元一次方程组的应用;CE:一元一次不等式组的应用.
【分析】(1)设A、B两种型号的手机每部进价各是x元、y元,根据每部A型号手机的进价比每部B型号手机进价多500元以及商场用50000元共购进A型号手机10部,B型号手机20部列出方程组,求出方程组的解即可得到结果;
(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,根据花费的钱数不超过7.5万元以及A型号手机的数量不少于B型号手机数量的2倍列出不等式组,求出不等式组的解集的正整数解,即可确定出购机方案;
②设A种型号的手机购进a部时,获得的利润为w元.列出w关于a的函数解析式,根据一次函数的性质即可求解.
【解答】解:(1)设A、B两种型号的手机每部进价各是x元、y元,
根据题意得:,
解得:,
答:A、B两种型号的手机每部进价各是2019元、1500元;
(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,
根据题意得:,
解得:≤a≤30,
∵a为解集内的正整数,
∴a=27,28,29,30,
∴有4种购机方案:
方案一:A种型号的手机购进27部,则B种型号的手机购进13部;
方案二:A种型号的手机购进28部,则B种型号的手机购进12部;
方案三:A种型号的手机购进29部,则B种型号的手机购进11部;
方案四:A种型号的手机购进30部,则B种型号的手机购进10部;
②设A种型号的手机购进a部时,获得的利润为w元.
根据题意,得w=500a+600(40﹣a)=﹣100a+24000,
∵﹣10<0,
∴w随a的增大而减小,
∴当a=27时,能获得最大利润.此时w=﹣100×27+24000=21700(元).
因此,购进A种型号的手机27部,购进B种型号的手机13部时,获利最大.
答:购进A种型号的手机27部,购进B种型号的手机13部时获利最大.
【点评】此题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式组的应用,找出满足题意的等量关系与不等关系是解本题的关键.