- 392.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
高中数学选修4-4坐标系与参数方程------高考真题演练
1(1)(2018全国卷III) 在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.
(1)求的取值范围;
(2)求中点的轨迹的参数方程.
1(2)(2018全国卷II)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).
(1)求和的直角坐标方程;
(2)若曲线截直线所得线段的中点坐标为,求的斜率.
1(3)(2018全国卷I)在直角坐标系中,曲线的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为
(1)求的直角坐标方程
(2)若与有且仅有三个公共点,求的方程
1(1)(2018全国卷III) 在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.
(1)求的取值范围;
(2)求中点的轨迹的参数方程.
解:(1)的参数方程为,∴的普通方程为,当时,直线:与有两个交点,当时,设直线的方程为,由直线与有两个交点有,得,∴或,∴或,综上.
(2)点坐标为,当时,点坐标为,当时,设直线的方程为,,∴有,整理得,∴,,∴ 得代入④得.当点时满足方程,∴中点的的轨迹方程是,即,由图可知,,,则,故点的参数方程为(为参数,).
1(2)(2018全国卷II)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).
(1)求和的直角坐标方程;
(2)若曲线截直线所得线段的中点坐标为,求的斜率.
解:(1)曲线的直角坐标方程为.
当时,的直角坐标方程为,
当时,的直角坐标方程为.
(2)将的参数方程代入的直角坐标方程,整理得关于的方程
.①
因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得,故,于是直线的斜率.
1(3)(2018全国卷I)在直角坐标系中,曲线的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为
(1)求的直角坐标方程
(2)若与有且仅有三个公共点,求的方程
1.
则,即
所以的直角坐标方程为
2.由题可知圆心坐标为,半径
又曲线方程,关于轴对称,且曲线过圆外定点
∴当曲线与圆有且仅有个交点时,设曲线在轴的右半部分与圆相切于点,
此时,
则,
,即直线的方程为
1(3)(2017全国卷3) [选修4-4:坐标系与参数方程](10分)
在直角坐标系xOy中,直线的参数方程为(t为参数),直线的参数方程为(m为参数),设与的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程:
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设,M为与C的交点,求M的极径.
【解析】⑴将参数方程转化为一般方程
……①
……②
①②消可得:
即的轨迹方程为;
⑵将参数方程转化为一般方程
……③
联立曲线和
解得
由解得
即的极半径是.
相关文档
- 高中物理选修31库仑定律知识点考点2021-05-1310页
- 高考地理一轮全程复习方略高效演练2021-05-132页
- 2019届高考数学一轮复习 第八章 第2021-05-135页
- 2014备考2013高考数学文真题含部分2021-05-1311页
- 高考数学回归课本直线与圆的方程2021-05-138页
- 高考数学总复习系列——高中数学选2021-05-1316页
- 2008-2017江苏高考选修系列矩阵与2021-05-138页
- 2020版高考英语一轮基础习选题 Uni2021-05-137页
- 高考数学总复习83直线圆与圆的位置2021-05-1310页
- 北京高考化学方程式知识点总结2021-05-139页