- 287.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2011年上海高考数学试卷(文)
一. 填空题(每小题4分,总56分)
1. 若全集,集合,则
2. 计算=
3. 若函数的反函数为,则
4. 函数的最大值为
5. 若直线过点(3,4),且(1,2)是它的一个法向量,则直线得方程为
6. 不等式的解为
7. 若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形,则该圆锥的侧面积为
8. 在相距2千米的两点处测量目标C,若,则两点之间的距离是 千米.
9. 若变量满足条件,则得最大值为
10. 课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为
11. 行列式所有可能的值中,最大的是
12. 在正三角形中,是边上的点,若,则=
13. 随机抽取的9位同学中,至少有2位同学在同一月份出生的概率为 (默认每个月的天数相同,结果精确到0.001)
14. 设是定义在上,以1为周期的函数,若函数在区间上的值域为,则在区间上的值域为
二. 选择题(每小题5分,总20分)
15.下列函数中,既是偶函数,又在区间上单调递减的函数是( )
(A) (B) (C) (D)[来源:学科网ZXXK]
16.若,且,则下列不等式中,恒成立的是( )
(A) (B) (C) (D)[来源:学+科+网Z+X+X+K]
17.若三角方程与的解集分别为,则( )[来源:学科网ZXXK]
(A) (B) (C) (D)
18.设是平面上给定的4个不同点,则使成立的点的个数为( )
(A) (B)1 (C)2 (D)4
三.解答题
19.(本题满分12分)已知复数满足(为虚数单位),复数的虚部为2,且是实数,求
[来源:学科网ZXXK]
20.(本题满分14分,第1小题7分,第2小题7分)
已知是底面边长为1的正四棱柱,高,求
(1)异面直线与所成角的大小(结果用反三角函数值表示);
(2)四面体的体积.
21.(本题满分14分,第1小题6分,第2小题8分)
已知函数,其中常数满足[来源:学。科。网Z。X。X。K]
(1)若,判断函数的单调性;
(2)若,求时的的取值范围.
22.(本题满分16分,第1小题4分,第2小题6分,第3小题6分)
已知椭圆(常数),是曲线上的动点,是曲线上的右顶点,定点的坐标为
(1)若与重合,求曲线的焦点坐标;
(2)若,求的最大值与最小值;
(3)若的最小值为,求实数的取值范围.
23.(本题满分18分,第1小题4分,第2小题6分,第3小题8分)
已知数列和的通项公式分别为,(.将集合中的元素从小到大依次排列,构成数列
(1)求三个最小的数,使它们既是数列中的项,又是数列中的项;
(2)数列中有多少项不是数列中的项?请说明理由;
(3)求数列的前项和.