• 436.00 KB
  • 2021-05-13 发布

高考数学浙江文科试题及答案解析

  • 22页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2016年浙江省高考数学试卷(文科)‎ ‎  ‎ 一.选择题(共8小题)‎ ‎1.【2016浙江(文)】已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁UP)∪Q=(  )‎ A.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5}‎ ‎【答案】C ‎【解析】解:∁UP={2,4,6},‎ ‎(∁UP)∪Q={2,4,6}∪{1,2,4}={1,2,4,6}.‎ ‎ 2.【2016浙江(文)】已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则(  )‎ A.m∥l B.m∥n C.n⊥l D.m⊥n ‎【答案】C ‎【解析】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α,‎ ‎∴m∥β或m⊂β或m⊥β,l⊂β,‎ ‎∵n⊥β, ∴n⊥l. ‎ ‎3.【2016浙江(文)】函数y=sinx2的图象是(  )‎ A. B. C. D.‎ ‎【答案】D ‎【解析】解:∵sin(﹣x)2=sinx2,‎ ‎∴函数y=sinx2是偶函数,即函数的图象关于y轴对称,排除A,C;‎ 由y=sinx2=0,‎ 则x2=kπ,k≥0,‎ 则x=±,k≥0,‎ 故函数有无穷多个零点,排除B,‎ ‎  ‎ ‎4.【2016浙江(文)】若平面区域,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是(  )‎ A. B. C. D.‎ ‎【答案】B ‎【解析】解:作出平面区域如图所示:‎ ‎∴当直线y=x+b分别经过A,B时,平行线间的距离相等.‎ 联立方程组,解得A(2,1),‎ 联立方程组,解得B(1,2).‎ 两条平行线分别为y=x﹣1,y=x+1,即x﹣y﹣1=0,x﹣y+1=0.‎ ‎∴平行线间的距离为d==,‎ ‎  ‎ ‎5.【2016浙江(文)】已知a,b>0且a≠1,b≠1,若logab>1,则(  )‎ A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b﹣1)(b﹣a)>0‎ ‎【答案】D ‎【解析】解:若a>1,则由logab>1得logab>logaa,即b>a>1,此时b﹣a>0,b>1,即(b﹣1)(b﹣a)>0,‎ 若0<a<1,则由logab>1得logab>logaa,即b<a<1,此时b﹣a<0,b<1,即(b﹣1)(b﹣a)>0,‎ 综上(b﹣1)(b﹣a)>0,‎ ‎ 6.【2016浙江(文)】已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的(  )‎ A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 ‎【答案】A ‎【解析】解:f(x)的对称轴为x=﹣,fmin(x)=﹣.‎ ‎(1)若b<0,则﹣>﹣,∴当f(x)=﹣时,f(f(x))取得最小值f(﹣)=﹣,‎ 即f(f(x))的最小值与f(x)的最小值相等.‎ ‎∴“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的充分条件.‎ ‎(2)若f(f(x))的最小值与f(x)的最小值相等,‎ 则fmin(x)≤﹣,即﹣≤﹣,解得b≤0或b≥2.‎ ‎∴“b<0”不是“f(f(x))的最小值与f(x)的最小值相等”的必要条件.‎ ‎ 7.【2016浙江(文)】已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.(  )‎ A.若f(a)≤|b|,则a≤b B.若f(a)≤2b,则a≤b C.若f(a)≥|b|,则a≥b D.若f(a)≥2b,则a≥b ‎【答案】B ‎【解析】解:A.若f(a)≤|b|,则由条件f(x)≥|x|得f(a)≥|a|,‎ 即|a|≤|b|,则a≤b不一定成立,故A错误,‎ B.若f(a)≤2b,‎ 则由条件知f(x)≥2x,‎ 即f(a)≥2a,则2a≤f(a)≤2b,‎ 则a≤b,故B正确,‎ C.若f(a)≥|b|,则由条件f(x)≥|x|得f(a)≥|a|,则|a|≥|b|不一定成立,故C错误,‎ D.若f(a)≥2b,则由条件f(x)≥2x,得f(a)≥2a,则2a≥2b,不一定成立,即a≥b不一定成立,故D错误,‎ ‎ 8.【2016浙江(文)】如图,点列{An}、{Bn}分别在某锐角的两边上,且|AnAn+1|=|An+1An+2|,An≠An+1,n∈N*,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1,n∈N*,(P≠Q表示点P与Q不重合)若dn=|AnBn|,Sn为△AnBnBn+1的面积,则(  )‎ A.{Sn}是等差数列 B.{Sn2}是等差数列 C.{dn}是等差数列 D.{dn2}是等差数列 ‎【答案】A ‎【解析】解:设锐角的顶点为O,|OA1|=a,|OB1|=b,‎ ‎|AnAn+1|=|An+1An+2|=b,|BnBn+1|=|Bn+1Bn+2|=d,‎ 由于a,b不确定,则{dn}不一定是等差数列,‎ ‎{dn2}不一定是等差数列,‎ 设△AnBnBn+1的底边BnBn+1上的高为hn,‎ 由三角形的相似可得==,‎ ‎==,‎ 两式相加可得,==2,‎ 即有hn+hn+2=2hn+1,‎ 由Sn=d•hn,可得Sn+Sn+2=2Sn+1,‎ 即为Sn+2﹣Sn+1=Sn+1﹣Sn,‎ 则数列{Sn}为等差数列.‎ 故选:A.‎ ‎  ‎ 二.填空题(共7小题)‎ ‎9.【2016浙江(文)】某几何体的三视图如图所示(单位:cm),则该几何体的表面积是   cm2,体积是   cm3.‎ ‎【答案】80;40.‎ ‎【解析】解:根据几何体的三视图,得;‎ 该几何体是下部为长方体,其长和宽都为4,高为2,‎ 表面积为2×4×4+2×42=64cm2,体积为2×42=32cm3;‎ 上部为正方体,其棱长为2,‎ 表面积是6×22=24 cm2,体积为23=8cm3;‎ 所以几何体的表面积为64+24﹣2×22=80cm2,‎ 体积为32+8=40cm3.‎ ‎ 10.【2016浙江(文)】已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是  ,半径是  .‎ ‎【答案】(﹣2,﹣4),5‎ ‎【解析】解:∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,‎ ‎∴a2=a+2≠0,解得a=﹣1或a=2.‎ 当a=﹣1时,方程化为x2+y2+4x+8y﹣5=0,‎ 配方得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(﹣2,﹣4),半径为5;‎ 当a=2时,方程化为,‎ 此时,方程不表示圆,‎ ‎  ‎ ‎11.【2016浙江(文)】已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=  ,b=   .‎ ‎【答案】;1.‎ ‎【解析】解:∵2cos2x+sin2x=1+cos2x+sin2x ‎=1+(cos2x+sin2x)+1‎ ‎=sin(2x+)+1,‎ ‎∴A=,b=1,‎ ‎ 12.【2016浙江(文)】设函数f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x﹣a)2,x∈R,则实数a=   ,b=   .‎ ‎ 【答案】﹣2;1.‎ ‎【解析】解:∵f(x)=x3+3x2+1,‎ ‎∴f(x)﹣f(a)=x3+3x2+1﹣(a3+3a2+1)‎ ‎=x3+3x2﹣(a3+3a2)‎ ‎∵(x﹣b)(x﹣a)2=(x﹣b)(x2﹣2ax+a2)=x3﹣(2a+b)x2+(a2+2ab)x﹣a2b,‎ 且f(x)﹣f(a)=(x﹣b)(x﹣a)2,‎ ‎∴,解得或(舍去),‎ ‎ 13.【2016浙江(文)】设双曲线x2﹣=1的左、右焦点分别为F1、F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是   .‎ ‎【答案】().‎ ‎【解析】解:如图,‎ 由双曲线x2﹣=1,得a2=1,b2=3,‎ ‎∴.‎ 不妨以P在双曲线右支为例,当PF2⊥x轴时,‎ 把x=2代入x2﹣=1,得y=±3,即|PF2|=3,‎ 此时|PF1|=|PF2|+2=5,则|PF1|+|PF2|=8;‎ 由PF1⊥PF2,得,‎ 又|PF1|﹣|PF2|=2,①‎ 两边平方得:,‎ ‎∴|PF1||PF2|=6,②‎ 联立①②解得:,‎ 此时|PF1|+|PF2|=.‎ ‎∴使△F1PF2为锐角三角形的|PF1|+|PF2|的取值范围是().‎ ‎ ‎ ‎ 14.【2016浙江(文)】如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是  .‎ ‎【答案】‎ ‎【解析】解:如图所示,取AC的中点O,∵AB=BC=3,∴BO⊥AC,‎ 在Rt△ACD′中,=.‎ 作D′E⊥AC,垂足为E,D′E==.‎ CO=,CE===,‎ ‎∴EO=CO﹣CE=.‎ 过点B作BF∥BO,作FE∥BO交BF于点F,则EF⊥AC.连接D′F.∠FBD′为直线AC与BD′所成的角.‎ 则四边形BOEF为矩形,∴BF=EO=.‎ EF=BO==.‎ 则∠FED′为二面角D′﹣CA﹣B的平面角,设为θ.‎ 则D′F2=+﹣2×cosθ=﹣5cosθ≥,cosθ=1时取等号.‎ ‎∴D′B的最小值==2.‎ ‎∴直线AC与BD′所成角的余弦的最大值===.‎ 故答案为:.‎ ‎ 15.【2016浙江(文)】已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是   .‎ ‎ 【答案】‎ ‎【解析】解:||+||=,‎ 其几何意义为在上的投影的绝对值与在上投影的绝对值的和,‎ 当与共线时,取得最大值.‎ ‎∴=.‎ ‎  ‎ 三.解答题(共5小题)‎ ‎16.【2016浙江(文)】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.‎ ‎(1)证明:A=2B;‎ ‎(2)若cosB=,求cosC的值.‎ ‎ 【解析】(1)证明:∵b+c=2acosB,‎ ‎∴sinB+sinC=2sinAcosB,‎ ‎∵sinC=sin(A+B)=sinAcosB+cosAsinB,‎ ‎∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),‎ ‎∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).‎ ‎∴A=2B.‎ ‎(II)解:cosB=,∴sinB==.‎ cosA=cos2B=2cos2B﹣1=,sinA==.‎ ‎∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.‎ ‎ 17.【2016浙江(文)】设数列{an}的前n项和为Sn,已知S2=4,an+1=2Sn+1,n∈N*.‎ ‎(Ⅰ)求通项公式an;‎ ‎(Ⅱ)求数列{|an﹣n﹣2|}的前n项和.‎ ‎ 【解析】解:(Ⅰ)∵S2=4,an+1=2Sn+1,n∈N*.‎ ‎∴a1+a2=4,a2=2S1+1=2a1+1,‎ 解得a1=1,a2=3,‎ 当n≥2时,an+1=2Sn+1,an=2Sn﹣1+1,‎ 两式相减得an+1﹣an=2(Sn﹣Sn﹣1)=2an,‎ 即an+1=3an,当n=1时,a1=1,a2=3,‎ 满足an+1=3an,‎ ‎∴=3,则数列{an}是公比q=3的等比数列,‎ 则通项公式an=3n﹣1.‎ ‎(Ⅱ)an﹣n﹣2=3n﹣1﹣n﹣2,‎ 设bn=|an﹣n﹣2|=|3n﹣1﹣n﹣2|,‎ 则b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,‎ 当n≥3时,3n﹣1﹣n﹣2>0,‎ 则bn=|an﹣n﹣2|=3n﹣1﹣n﹣2,‎ 此时数列{|an﹣n﹣2|}的前n项和Tn=3+﹣=,‎ 则Tn==.‎ ‎  ‎ ‎18.【2016浙江(文)】如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.‎ ‎(Ⅰ)求证:BF⊥平面ACFD;‎ ‎(Ⅱ)求直线BD与平面ACFD所成角的余弦值.‎ ‎ 【解析】解:(Ⅰ)证明:延长AD,BE,CF相交于一点K,如图所示:‎ ‎∵平面BCFE⊥平面ABC,且AC⊥BC;‎ ‎∴AC⊥平面BCK,BF⊂平面BCK;‎ ‎∴BF⊥AC;‎ 又EF∥BC,BE=EF=FC=1,BC=2;‎ ‎∴△BCK为等边三角形,且F为CK的中点;‎ ‎∴BF⊥CK,且AC∩CK=C;‎ ‎∴BF⊥平面ACFD;‎ ‎(Ⅱ)∵BF⊥平面ACFD;‎ ‎∴∠BDF是直线BD和平面ACFD所成的角;‎ ‎∵F为CK中点,且DF∥AC;‎ ‎∴DF为△ACK的中位线,且AC=3;‎ ‎∴;‎ 又;‎ ‎∴在Rt△BFD中,,cos;‎ 即直线BD和平面ACFD所成角的余弦值为.‎ ‎  ‎ ‎19.【2016浙江(文)】如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|﹣1,‎ ‎(Ⅰ)求p的值;‎ ‎(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.‎ ‎ 【解析】解:(Ⅰ)由题意可得,抛物线上点A到焦点F的距离等于A到直线x=﹣1的距离,‎ 由抛物线定义得,,即p=2;‎ ‎(Ⅱ)由(Ⅰ)得,抛物线方程为y2=4x,F(1,0),可设(t2,2t),t≠0,t≠±1,‎ ‎∵AF不垂直y轴,‎ ‎∴设直线AF:x=sy+1(s≠0),‎ 联立,得y2﹣4sy﹣4=0.‎ y1y2=﹣4,‎ ‎∴B(),‎ 又直线AB的斜率为,故直线FN的斜率为,‎ 从而得FN:,直线BN:y=﹣,‎ 则N(),‎ 设M(m,0),由A、M、N三点共线,得,‎ 于是m==,得m<0或m>2.‎ 经检验,m<0或m>2满足题意.‎ ‎∴点M的横坐标的取值范围为(﹣∞,0)∪(2,+∞).‎ ‎ ‎ ‎20.【2016浙江(文)】设函数f(x)=x3+,x∈[0,1],证明:‎ ‎(Ⅰ)f(x)≥1﹣x+x2‎ ‎(Ⅱ)<f(x)≤.‎ ‎ 【解析】解:(Ⅰ)证明:因为f(x)=x3+,x∈[0,1],‎ 且1﹣x+x2﹣x3==,‎ 所以≤,‎ 所以1﹣x+x2﹣x3≤,‎ 即f(x)≥1﹣x+x2;‎ ‎(Ⅱ)证明:因为0≤x≤1,所以x3≤x,‎ 所以f(x)=x3+≤x+=x+﹣+=+≤;‎ 由(Ⅰ)得,f(x)≥1﹣x+x2=+≥,‎ 且f()=+=>,‎ 所以f(x)>;‎ 综上,<f(x)≤.‎ ‎ ‎ 绝密★启封前 ‎ 2016年浙江省高考数学试卷(文科)‎ 一、选择题(本大题8小题,每题5分,共40分)‎ ‎1.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁UP)∪Q=(  )‎ ‎ A.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5}‎ ‎2.已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则(  )‎ ‎ A.m∥l B.m∥n C.n⊥l D.m⊥n ‎3.函数y=sinx2的图象是(  )‎ ‎ A. B. ‎ ‎ C. D.‎ ‎4.若平面区域,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是(  )‎ ‎ A. B. C. D.‎ ‎5.已知a,b>0且a≠1,b≠1,若logab>1,则(  )‎ ‎ A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 ‎ ‎ C.(b﹣1)(b﹣a)<0 D.(b﹣1)(b﹣a)>0‎ ‎6.已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的(  )‎ ‎ A.充分不必要条件 B.必要不充分条件 ‎ C.充分必要条件 D.既不充分也不必要条件 ‎7.已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.(  )‎ ‎ A.若f(a)≤|b|,则a≤b B.若f(a)≤2b,则a≤b ‎ C.若f(a)≥|b|,则a≥b D.若f(a)≥2b,则a≥b 8. 如图,点列{An}、{Bn}分别在某锐角的两边上,且|AnAn+1|=|An+1An+2|,An≠An+1,‎ n∈N*,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1,n∈N*,(P≠Q表示点P与Q不重合)若dn=|AnBn|,Sn为△AnBnBn+1的面积,则(  )‎ ‎ A.{Sn}是等差数列 B.{Sn2}是等差数列 C.{dn}是等差数列 D.{dn2}是等差数列 ‎ ‎ 二、填空题(本大题7小题,9、10、11、12每题6分,13、14、15每题4分,共36分)‎ ‎9.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是      cm2,体积是      cm3.‎ ‎10.已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是      ,半径是      .‎ ‎11.已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=      ,b=      .‎ 12. 设函数f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x﹣a)2,x∈R,则实数a=      ,b=      .‎ ‎13.设双曲线x2﹣=1的左、右焦点分别为F1、F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是      .‎ ‎14.如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是      .‎ ‎15.已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是      .‎ ‎ ‎ 三、解答题(本大题5小题,共74分)‎ ‎16.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.‎ ‎(1)证明:A=2B;‎ ‎(2)若cosB=,求cosC的值.‎ ‎17.(15分)设数列{an}的前n项和为Sn,已知S2=4,an+1=2Sn+1,n∈N*.‎ ‎(Ⅰ)求通项公式an;‎ ‎(Ⅱ)求数列{|an﹣n﹣2|}的前n项和.‎ ‎18.(15分)如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.‎ ‎(Ⅰ)求证:BF⊥平面ACFD;‎ ‎(Ⅱ)求直线BD与平面ACFD所成角的余弦值.‎ ‎19.(15分)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|﹣1,‎ ‎(Ⅰ)求p的值;‎ ‎(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.‎ ‎20.(15分)设函数f(x)=x3+,x∈[0,1],证明:‎ ‎(Ⅰ)f(x)≥1﹣x+x2‎ ‎(Ⅱ)<f(x)≤.‎ ‎ ‎ ‎2016年浙江省高考数学试卷(文科)‎ ‎  ‎ 一、选择题 ‎1.【解答】解:∁UP={2,4,6},(∁UP)∪Q={2,4,6}∪{1,2,4}={1,2,4,6}.‎ 故选C.‎ ‎ ‎ ‎2.【解答】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α,‎ ‎∴m∥β或m⊂β或m⊥β,l⊂β,∵n⊥β,∴n⊥l.‎ 故选:C.‎ ‎ ‎ ‎3.【解答】解:∵sin(﹣x)2=sinx2,‎ ‎∴函数y=sinx2是偶函数,即函数的图象关于y轴对称,排除A,C;‎ 由y=sinx2=0,则x2=kπ,k≥0,则x=±,k≥0,故函数有无穷多个零点,排除B,‎ 故选:D ‎ ‎ ‎4.【解答】解:作出平面区域如图所示:‎ ‎∴当直线y=x+b分别经过A,B时,平行线间的距离相等.‎ 联立方程组,解得A(2,1),‎ 联立方程组,解得B(1,2).‎ 两条平行线分别为y=x﹣1,y=x+1,即x﹣y﹣1=0,x﹣y+1=0.‎ ‎∴平行线间的距离为d==,‎ 故选:B.‎ ‎ ‎ 5. ‎【解答】解:若a>1,则由logab>1得logab>logaa,即b>a>1,‎ 此时b﹣a>0,b>1,即(b﹣1)(b﹣a)>0,‎ 若0<a<1,则由logab>1得logab>logaa,即b<a<1,‎ 此时b﹣a<0,b<1,即(b﹣1)(b﹣a)>0,‎ 综上(b﹣1)(b﹣a)>0,‎ 故选:D.‎ ‎ ‎ ‎6.【解答】解:f(x)的对称轴为x=﹣,fmin(x)=﹣.‎ ‎(1)若b<0,则﹣>﹣,‎ ‎∴当f(x)=﹣时,f(f(x))取得最小值f(﹣)=﹣,‎ 即f(f(x))的最小值与f(x)的最小值相等.‎ ‎∴“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的充分条件.‎ ‎(2)若f(f(x))的最小值与f(x)的最小值相等,‎ 则fmin(x)≤﹣,即﹣≤﹣,解得b≤0或b≥2.‎ ‎∴“b<0”不是“f(f(x))的最小值与f(x)的最小值相等”的必要条件.‎ 故选A.‎ ‎ ‎ ‎7.【解答】解:A.若f(a)≤|b|,则由条件f(x)≥|x|得f(a)≥|a|,‎ 即|a|≤|b|,则a≤b不一定成立,故A错误,‎ B.若f(a)≤2b,则由条件知f(x)≥2x,即f(a)≥2a,则2a≤f(a)≤2b,‎ 则a≤b,故B正确,‎ C.若f(a)≥|b|,则由条件f(x)≥|x|得f(a)≥|a|,则|a|≥|b|不一定成立,故C错误,‎ D.若f(a)≥2b,则由条件f(x)≥2x,得f(a)≥2a,则2a≥2b,不一定成立,即a≥b不一定成立,故D错误,‎ 故选:B ‎ ‎ ‎8.【解答】解:设锐角的顶点为O,|OA1|=a,|OB1|=c,‎ ‎|AnAn+1|=|An+1An+2|=b,|BnBn+1|=|Bn+1Bn+2|=d,‎ 由于a,c不确定,则{dn}不一定是等差数列,{dn2}不一定是等差数列,‎ 设△AnBnBn+1的底边BnBn+1上的高为hn,‎ 由三角形的相似可得==,‎ ‎==,两式相加可得,==2,‎ 即有hn+hn+2=2hn+1,由Sn=d•hn,可得Sn+Sn+2=2Sn+1,‎ 即为Sn+2﹣Sn+1=Sn+1﹣Sn,‎ 则数列{Sn}为等差数列.‎ 故选:A.‎ ‎ ‎ 二、填空题 ‎9.【解答】解:根据几何体的三视图,得;‎ 该几何体是下部为长方体,其长和宽都为4,高为2,‎ 表面积为2×4×4+2×42=64cm2,体积为2×42=32cm3;‎ 上部为正方体,其棱长为2,表面积是6×22=24 cm2,体积为23=8cm3;‎ 所以几何体的表面积为64+24﹣2×22=80cm2,体积为32+8=40cm3.‎ 故答案为:80;40.‎ ‎ ‎ ‎10.【解答】解:∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,‎ ‎∴a2=a+2≠0,解得a=﹣1或a=2.‎ 当a=﹣1时,方程化为x2+y2+4x+8y﹣5=0,‎ 配方得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(﹣2,﹣4),半径为5;‎ 当a=2时,方程化为,‎ 此时,方程不表示圆,‎ 故答案为:(﹣2,﹣4),5.‎ ‎ ‎ ‎11.【解答】解:∵2cos2x+sin2x=1+cos2x+sin2x=1+(cos2x+sin2x)+1‎ ‎=sin(2x+)+1,∴A=,b=1,‎ 故答案为:;1.‎ ‎ ‎ ‎12.【解答】解:∵f(x)=x3+3x2+1,‎ ‎∴f(x)﹣f(a)=x3+3x2+1﹣(a3+3a2+1)=x3+3x2﹣(a3+3a2)‎ ‎∵(x﹣b)(x﹣a)2=(x﹣b)(x2﹣2ax+a2)=x3﹣(2a+b)x2+(a2+2ab)x﹣a2b,‎ 且f(x)﹣f(a)=(x﹣b)(x﹣a)2,‎ ‎∴,解得或(舍去),‎ 故答案为:﹣2;1.‎ ‎13.【解答】解:如图,由双曲线x2﹣=1,得a2=1,b2=3,∴.‎ 不妨以P在双曲线右支为例,当PF2⊥x轴时,‎ 把x=2代入x2﹣=1,得y=±3,即|PF2|=3,‎ 此时|PF1|=|PF2|+2=5,则|PF1|+|PF2|=8;‎ 由PF1⊥PF2,得,‎ 又|PF1|﹣|PF2|=2,① 两边平方得:,‎ ‎∴|PF1||PF2|=6,② 联立①②解得:,‎ 此时|PF1|+|PF2|=.‎ ‎∴使△F1PF2为锐角三角形的|PF1|+|PF2|的取值范围是().故答案为:().‎ ‎ ‎ ‎14.【解答】解:如图所示,取AC的中点O,∵AB=BC=3,∴BO⊥AC,‎ 在Rt△ACD′中,=.作D′E⊥AC,垂足为E,D′E==.‎ CO=,CE===,∴EO=CO﹣CE=.‎ 过点B作BF∥AC,作FE∥BO交BF于点F,则EF⊥AC.连接D′F.∠FBD′为直线AC与BD′所成的角.‎ 则四边形BOEF为矩形,∴BF=EO=.EF=BO==.‎ 则∠FED′为二面角D′﹣CA﹣B的平面角,设为θ.‎ 则D′F2=+﹣2×cosθ=﹣5cosθ≥,cosθ=1时取等号.‎ ‎∴D′B的最小值==2.‎ ‎∴直线AC与BD′所成角的余弦的最大值===.故答案为:.‎ ‎15.【解答】解:||+||=,‎ 其几何意义为在上的投影的绝对值与在上投影的绝对值的和,‎ 当与共线时,取得最大值.‎ ‎∴=. 故答案为:.‎ ‎ ‎ 三、解答题 ‎16.【解答】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,‎ ‎∵sinC=sin(A+B)=sinAcosB+cosAsinB,‎ ‎∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),‎ ‎∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).‎ ‎∴A=2B.‎ ‎(II)解:cosB=,∴sinB==.‎ cosA=cos2B=2cos2B﹣1=,sinA==.‎ ‎∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.‎ ‎ ‎ ‎17.【解答】解:(Ⅰ)∵S2=4,an+1=2Sn+1,n∈N*.‎ ‎∴a1+a2=4,a2=2S1+1=2a1+1, 解得a1=1,a2=3,‎ 当n≥2时,an+1=2Sn+1,an=2Sn﹣1+1, 两式相减得an+1﹣an=2(Sn﹣Sn﹣1)=2an,‎ 即an+1=3an,当n=1时,a1=1,a2=3, 满足an+1=3an,‎ ‎∴=3,则数列{an}是公比q=3的等比数列, 则通项公式an=3n﹣1.‎ ‎(Ⅱ)an﹣n﹣2=3n﹣1﹣n﹣2, ‎ 设bn=|an﹣n﹣2|=|3n﹣1﹣n﹣2|,‎ 则b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,‎ 当n≥3时,3n﹣1﹣n﹣2>0,‎ 则bn=|an﹣n﹣2|=3n﹣1﹣n﹣2,‎ 此时数列{|an﹣n﹣2|}的前n项和 Tn=3+﹣ = ,‎ 则Tn==.‎ ‎ ‎ ‎18.【解答】解:(Ⅰ)证明:延长AD,BE,CF相交于一点K,如图所示:‎ ‎∵平面BCFE⊥平面ABC,且AC⊥BC;‎ ‎∴AC⊥平面BCK,BF⊂平面BCK; ∴BF⊥AC;‎ 又EF∥BC,BE=EF=FC=1,BC=2;‎ ‎∴△BCK为等边三角形,且F为CK的中点;‎ ‎∴BF⊥CK,且AC∩CK=C; ∴BF⊥平面ACFD;‎ ‎(Ⅱ)∵BF⊥平面ACFD;‎ ‎∴∠BDF是直线BD和平面ACFD所成的角;‎ ‎∵F为CK中点,且DF∥AC;‎ ‎∴DF为△ACK的中位线,且AC=3;∴;‎ 又;‎ ‎∴在Rt△BFD中,,cos;‎ 即直线BD和平面ACFD所成角的余弦值为.‎ ‎ ‎ ‎19.【解答】解:(Ⅰ)由题意可得,抛物线上点A到焦点F的距离等于A到直线x=﹣1的距离, 由抛物线定义得,,即p=2;‎ ‎(Ⅱ)由(Ⅰ)得,抛物线方程为y2=4x,F(1,0),可设(t2,2t),t≠0,t≠±1,‎ ‎∵AF不垂直y轴, ∴设直线AF:x=sy+1(s≠0),‎ 联立,得y2﹣4sy﹣4=0. y1y2=﹣4, ∴B(),‎ 又直线AB的斜率为,故直线FN的斜率为,‎ 从而得FN:,直线BN:y=﹣, 则N(),‎ 设M(m,0),由A、M、N三点共线,得,‎ 于是m==,得m<0或m>2.‎ 经检验,m<0或m>2满足题意.‎ ‎∴点M的横坐标的取值范围为(﹣∞,0)∪(2,+∞).‎ ‎ ‎ ‎20.【解答】解:(Ⅰ)证明:因为f(x)=x3+,x∈[0,1],‎ 且1﹣x+x2﹣x3==,所以≤,‎ 所以1﹣x+x2﹣x3≤,即f(x)≥1﹣x+x2;‎ ‎(Ⅱ)证明:因为0≤x≤1,所以x3≤x,‎ 所以f(x)=x3+≤x+=x+﹣+=+≤;‎ 由(Ⅰ)得,f(x)≥1﹣x+x2=+≥,‎ 且f()=+=>,所以f(x)>;‎ 综上,<f(x)≤.‎ ‎ ‎