- 4.30 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第八章 第三节 空间向量在立体几何中的应用
第三节 空间向量在立体几何中的应用
一、 填空题
1.若等边的边长为,平面内一点满足,则_________
2.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是________。
【解析】设由可得故
【答案】(0,-1,0)
二、解答题
3.(本小题满分12分)
如图,在五面体ABCDEF中,FA 平面ABCD, AD//BC//FE,ABAD,M为EC的中点,AF=AB=BC=FE=AD
(I) 求异面直线BF与DE所成的角的大小;
(II) 证明平面AMD平面CDE;
(III)求二面角A-CD-E的余弦值。
如图所示,建立空间直角坐标系,
点为坐标原点。设依题意得
(I)
所以异面直线与所成的角的大小为.
(II)证明: ,
37
(III)
又由题设,平面的一个法向量为
4.(本题满分15分)如图,平面平面,
是以为斜边的等腰直角三角形,分别为,
,的中点,,.
(I)设是的中点,证明:平面;
(II)证明:在内存在一点,使平面,并求点到,的距离.
证明:(I)如图,连结OP,以O为坐标原点,分别以OB、OC、OP所在直线为轴,轴,轴,建立空间直角坐标系O,
则,由题意得,因,因此平面BOE的法向量为,得,又直线不在平面内,因此有平面
6.(本小题满分12分)
如图,已知两个正方行ABCD 和DCEF不在同一平面内,M,N分别为AB,DF的中点 。
(I)若平面ABCD ⊥平面DCEF,求直线MN与平面DCEF所成角的正值弦;
(II)用反证法证明:直线ME 与 BN 是两条异面直线。
37
设正方形ABCD,DCEF的边长为2,以D为坐标原点,分别以射线DC,DF,DA为x,y,z轴正半轴建立空间直角坐标系如图.
则M(1,0,2),N(0,1,0),可得=(-1,1,2).
又=(0,0,2)为平面DCEF的法向量,
可得cos(,)=·
所以MN与平面DCEF所成角的正弦值为
cos· ……6分
(Ⅱ)假设直线ME与BN共面, ……8分
则AB平面MBEN,且平面MBEN与平面DCEF交于EN
由已知,两正方形不共面,故AB平面DCEF。
又AB//CD,所以AB//平面DCEF。面EN为平面MBEN与平面DCEF的交线,
所以AB//EN。
又AB//CD//EF,
所以EN//EF,这与EN∩EF=E矛盾,故假设不成立。
所以ME与BN不共面,它们是异面直线. ……12分
7.(13分)
如图,四边形ABCD是边长为1的正方形,,
,且MD=NB=1,E为BC的中点
(1) 求异面直线NE与AM所成角的余弦值
(2) 在线段AN上是否存在点S,使得ES平面AMN?若存在,求线段AS的长;若不存在,请说明理由
17.解析:(1)在如图,以D为坐标原点,建立空间直角坐标
依题意,得。
37
,
所以异面直线与所成角的余弦值为.A
(2)假设在线段上存在点,使得平面.
,
可设
又.
由平面,得即
故,此时.
经检验,当时,平面.
故线段上存在点,使得平面,此时.
8.(本小题满分12分)
如图,直三棱柱中,、分别为、的中点,平面
(I)证明:
(II)设二面角为60°,求与平面所成的角的大小。
分析一:求与平面所成的线面角,只需求点到面的距离即可。
19.(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)
如题(19)图,在四棱锥中,且;平面平面,;为的中点,.求:
(Ⅰ)点到平面的距离;
37
(Ⅱ)二面角的大小.
(Ⅰ)如答(19)图2,以S(O)为坐标原点,射线OD,OC分别为x轴,y轴正向,建立空间坐标系,设,因平面
即点A在xoz平面上,因此
又
因AD//BC,故BC⊥平面CSD,即BCS与平面
yOx重合,从而点A到平面BCS的距离为.
(Ⅱ)易知C(0,2,0),D(,0,0). 因E为BS的中点.
ΔBCS为直角三角形 ,
知
设B(0,2, ),>0,则=2,故B(0,2,2),所以E(0,1,1) .
在CD上取点G,设G(),使GE⊥CD .
由故
①
又点G在直线CD上,即,由=(),则有 ②
联立①、②,解得G= ,
故=.又由AD⊥CD,所以二面角E-CD-A的平面角为向量与向量所成的角,记此角为 .
因为=,,所以
故所求的二面角的大小为 .
37
作于,连,则,为二面角的平面角,.不妨设,则.在中,由,易得.
设点到面的距离为,与平面所成的角为。利用,可求得,又可求得
即与平面所成的角为
分析二:作出与平面所成的角再行求解。如图可证得,所以面。由分析一易知:四边形为正方形,连,并设交点为,则,为在面内的射影。。以下略。
分析三:利用空间向量的方法求出面的法向量,则与平面所成的角即为与法向量的夹角的余角。具体解法详见高考试题参考答案。
总之在目前,立体几何中的两种主要的处理方法:传统方法与向量的方法仍处于各自半壁江山的状况。命题人在这里一定会兼顾双方的利益。
9.(本小题共14分)
如图,四棱锥的底面是正方形,,点E在棱PB上.
(Ⅰ)求证:平面;
(Ⅱ)当且E为PB的中点时,求AE与
平面PDB所成的角的大小.
【解法2】如图,以D为原点建立空间直角坐标系,
设
则
37
,
(Ⅰ)∵,
∴,
∴AC⊥DP,AC⊥DB,∴AC⊥平面PDB,
∴平面.
(Ⅱ)当且E为PB的中点时,,
设AC∩BD=O,连接OE,
由(Ⅰ)知AC⊥平面PDB于O,
∴∠AEO为AE与平面PDB所的角,
∵,
∴,
∴,即AE与平面PDB所成的角的大小为.
10.(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分)
如题(18)图,在五面体ABCDEF中,AB//DC,∠BAD=,CD=AD=2.,四边形ABFE为平行四边形,FA⊥平面ABCD,FC=3,ED=,求:
(Ⅰ)直线AB到平面EFCD的距离:
(Ⅱ)二面角F-AD-E的平面角的正切值,
18.(本小题满分12分)
如图4,在正三棱柱中,
D是的中点,点E在上,且。
(I) 证明平面平面
(II) 求直线和平面所成角的正弦值。
37
解 (I) 如图所示,由正三棱柱的性质知平面
又DE平面ABC,所以DEAA.
而DEAE。AAAE=A 所以DE平面AC CA,又DE平面ADE,故平面ADE平面AC CA。
解法2 如图所示,设O使AC的中点,以O为原点建立空间直角坐标系,不妨设
A A=,则AB=2,相关各点的坐标分别是
A(0,-1,0), B(,0,0), C(0,1,), D(,-,)。
易知=(,1,0), =(0,2,), =(,-,)
设平面ABC的法向量为n=(x,y,z),则有
解得x=-y, z=-,
故可取n=(1,-,)。
所以,(n·)===。
由此即知,直线AD和平面AB C所成角的正弦值为。
37
11.(本小题满分12分)
如图3,在正三棱柱ABC-中,AB=4, A=,点D是BC的中点,点E在AC上,且DEE
(Ⅰ)证明:平面平面;
(Ⅱ)求直线AD和平面所成角的正弦值。
解法2 如图所示,设O是AC的中点,以O为原点建立空间直角坐标系,则相关各
点的坐标分别是A(2,0,0,), .(2,0, ), D(-1, ), E(-1,0.0)
易知=(-3,,-),=(0,-,0),=(-3,,0)
设n=(x,y,z)是平面DE的一个法向量,则
37
解得
故可取n=(,0,-3,)于是
=
由此即知,直线AD和平面DE所成的角是正弦为
12.(本小题满分12分)
在四棱锥中,底面是矩形,平面,,. 以的中点为球心、为直径的球面交于点,交于点.
(1)求证:平面⊥平面;
(2)求直线与平面所成的角的大小;
(3)求点到平面的距离.
方法二:
(1)同方法一;
(2)如图所示,建立空间直角坐标系,则,,, ,,;设平面的一个法向量,由可得:,令,则
。设所求角为,则,
所以所求角的大小为。
(3)由条件可得,.在中,,所以,则, ,所以所求距离等于点到平面距离的,设点到平面距离为则,所以所求距离为。
37
19(本小题满分12分)
如图,正方形所在平面与平面四边形所在平面互
相垂直,△是等腰直角三角形,
(I)求证:;
(II)设线段的中点为,在直线上是否存在一点,使得?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;
(III)求二面角的大小。
(Ⅰ)因为△ABE为等腰直角三角形,AB=AE,
所以AE⊥AB.
又因为平面ABEF⊥平面ABCD,AE平面ABEF,
平面ABEF∩平面ABCD=AB,
所以AE⊥平面ABCD.
所以AE⊥AD.
因此,AD,AB,AE两两垂直,以A为坐标原点,建立 如图所示的直角坐标系A-xyz.
设AB=1,则AE=1,B(0,1,0),D (1, 0, 0 ) ,
E ( 0, 0, 1 ), C ( 1, 1, 0 ).
因为FA=FE, ∠AEF = 45°,
所以∠AFE= 90°.
从而,.
所以,,.
,.
所以EF⊥BE, EF⊥BC.
因为BE平面BCE,BC∩BE=B ,
所以EF⊥平面BCE.
(Ⅱ)存在点M,当M为AE中点时,PM∥平面BCE.
M ( 0,0, ), P ( 1, ,0 ).
从而=,
于是·=·=0
所以PM⊥FE,又EF⊥平面BCE,直线PM不在平面BCE内,
故PMM∥平面BCE. ………………………………8分
37
(Ⅲ)设平面BDF的一个法向量为,并设=(x,y,z).
,
即
取y=1,则x=1,z=3。从而。
取平面ABD的一个法向量为。
。
故二面角F—BD—A的大小为arccos。……………………………………12分
14.(本题满分14分)
如图,在直三棱柱中,,
,求二面角的大小。
简答:
第一部分 五年高考荟萃
2009年高考题
2005—2008年高考题
解答题
1. A
B
C
D
E
A1
B1
C1
D1
(2008全国Ⅱ19)(本小题满分12分)
如图,正四棱柱中,,点在上且.
37
(Ⅰ)证明:平面;
(Ⅱ)求二面角的大小.
以为坐标原点,射线为轴的正半轴,
A
B
C
D
E
A1
B1
C1
D1
y
x
z
建立如图所示直角坐标系.依题设,.
,
.
(Ⅰ)证明 因为,,
故,.
又,
所以平面.
(Ⅱ)解 设向量是平面的法向量,则
,.
故,.
令,则,,.
等于二面角的平面角,
.
所以二面角的大小为.
2. (2008安徽)如图,在四棱锥中,底面四边长
为1的菱形,, , ,为
的中点,为的中点
(Ⅰ)证明:直线;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离。
37
作于点P,如图,分别以AB,AP,AO所在直线为
轴建立坐标系
,
(1)证明
设平面OCD的法向量为,则
即
取,解得
(2)解 设与所成的角为,
, 与所成角的大小为.
(3)解 设点B到平面OCD的距离为,
则为在向量上的投影的绝对值,
由 , 得.所以点B到平面OCD的距离为
3. (2008湖南17 )如图所示,四棱锥P-ABCD的底面
ABCD是边长为1的菱形,∠BCD=60°,E是CD
的中点,PA⊥底面ABCD,PA=2.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.
如图所示,以A为原点,建立空间直角坐标系.则相关各点的
坐标分别是A(0,0,0),B(1,0,0),
37
P(0,0,2),
(Ⅰ)证明 因为,
平面PAB的一个法向量是,
所以共线.从而BE⊥平面PAB.
又因为平面PBE,
故平面PBE⊥平面PAB.
(Ⅱ)解 易知
设是平面PBE的一个法向量,则由得
所以
设是平面PAD的一个法向量,则由得所以故可取
于是,
故平面PAD和平面PBE所成二面角(锐角)的大小是
4. (2008福建18)如图,在四棱锥P-ABCD中,则面PAD⊥底面 ABCD,侧棱PA=PD=,底面ABCD为直角梯形,
其中BC∥ AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求异面直线PD与CD所成角的大小;
37
(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出 的值;若不存在,请说明理由.
(Ⅰ)证明 在△PAD中PA=PD,O为AD中点,所以PO⊥AD,
又侧面PAD⊥底面ABCD,平面平面ABCD=AD, 平面PAD,
所以PO⊥平面ABCD.
(Ⅱ)解 以O为坐标原点,的方向分别为x轴、y轴、
z轴的正方向,建立空间直角坐标系O-xyz,依题意,易得
A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),P(0,0,1),
所以
所以异面直线PB与CD所成的角是arccos,
(Ⅲ)解 假设存在点Q,使得它到平面PCD的距离为,
由(Ⅱ)知
设平面PCD的法向量为n=(x0,y0,z0).
则所以即,
取x0=1,得平面PCD的一个法向量为n=(1,1,1).
设由,得
解y=-或y=(舍去),
此时,所以存在点Q满足题意,此时.
5. (2007福建理•18)如图,正三棱柱ABC-A1B1C1的所有
棱长都为2,D为CC1中点。
(Ⅰ)求证:AB1⊥面A1BD;
(Ⅱ)求二面角A-A1D-B的大小;
(Ⅲ)求点C到平面A1BD的距离;
(Ⅰ)证明 取中点,连结.
为正三角形,.
在正三棱柱中,平面平面,
平面.
37
取中点,以为原点,,,的方向为轴的正方向建立空间直角坐标系,则,,,,,
,,.
,,
x
z
A
B
C
D
O
F
y
,.
平面.
(Ⅱ)解 设平面的法向量为.
,.
,,
令得为平面的一个法向量.
由(Ⅰ)知平面,
为平面的法向量.
,.
二面角的大小为.
(Ⅲ)解 由(Ⅱ),为平面法向量,
.
点到平面的距离.
6.(2006广东卷)如图所示,AF、DE分别是⊙O、⊙O1的直
径.AD与两圆所在的平面均垂直,AD=8,BC是⊙O的直径,
AB=AC=6,OE//AD.
(Ⅰ)求二面角B—AD—F的大小;
37
(Ⅱ)求直线BD与EF所成的角.
解 (Ⅰ)∵AD与两圆所在的平面均垂直,
∴AD⊥AB, AD⊥AF,故∠BAD是二面角B—AD—F的平面角,
依题意可知,ABCD是正方形,所以∠BAD=450.
即二面角B—AD—F的大小为450.
(Ⅱ)以O为原点,BC、AF、OE所在直线为坐标轴,建立空间直角坐标系(如图所示),则O(0,0,0),A(0,,0),B(,0,0),D(0,,8),E(0,0,8),F(0,,0)
所以,
.
设异面直线BD与EF所成角为,
则
直线BD与EF所成的角为
7.(2005江西)如图,在长方体ABCD—A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1—EC—D的大小为.
以D为坐标原点,直线DA,DC,DD1分别为x, y, z轴,建 立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),
E(1,x,0),A(1,0,0),C(0,2,0)
(1)证明
(2)解 因为E为AB的中点,则E(1,1,0),
从而,
,
设平面ACD1的法向量为,
37
则
也即,得,从而,所以点E到平面AD1C的距离为
(3)解 设平面D1EC的法向量,
∴
由 令b=1, ∴c=2,a=2-x,
∴
依题意
∴(不合,舍去), .
∴AE=时,二面角D1—EC—D的大小为.
第二部分 三年联考汇编
2009年联考题
解答题
1.(湖南省衡阳市八中2009届高三第三次月考试题)如图,P—ABCD是正四棱锥,是正方体,其中
(1)求证:;
(2)求平面PAD与平面所成的锐二面角的余弦值;
(3)求到平面PAD的距离
以为轴,为轴,为轴建立空间直角坐标系
(1)证明 设E是BD的中点,P—ABCD是正四棱锥,∴
37
又, ∴ ∴∴
∴ , 即。
(2)解 设平面PAD的法向量是,
∴ 取得,又平面的法向量是∴ , ∴。
M
P
D
C
B
A
(3)解 ∴到平面PAD的距离。
2. (陕西省西安铁一中2009届高三12月月考)如图,边长为2的等
边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,
M为BC的中点
(Ⅰ)证明:AM⊥PM ;
(Ⅱ)求二面角P-AM-D的大小;
z
y
x
M
P
D
C
B
Á
(Ⅲ)求点D到平面AMP的距离。
(Ⅰ) 证明 以D点为原点,分别以直线DA、DC为x轴、y轴,
建立如图所示的空间直角坐标系,
依题意,可得
∴
∴
即,∴AM⊥PM .
(Ⅱ)解 设,且平面PAM,则
即
37
∴ ,
取,得
取,显然平面ABCD, ∴
结合图形可知,二面角P-AM-D为45°;
(Ⅲ) 设点D到平面PAM的距离为,由(Ⅱ)可知与平面PAM垂直,则
=
即点D到平面PAM的距离为
3.(厦门市第二外国语学校2008—2009学年高三数学第四次月考)已知点H在正方体的对角线上,∠HDA=.
A
B
C
D
x
y
z
H
(Ⅰ)求DH与所成角的大小;
(Ⅱ)求DH与平面所成角的大小.
解:以为原点,为单位长建立空间直角坐标系.
设
则,.连结,.
设,由已知,
由
可得.解得,
所以.(Ⅰ)因为,
所以.即DH与所成的角为.
(Ⅱ)平面的一个法向量是.
37
因为, 所以.
可得DH与平面所成的角为.
A
C
D
O
B
E
y
z
x
4.(广东省北江中学2009届高三上学期12月月考)如图,
在四面体ABCD中,O、E分别是BD、BC的中点,
(1)求证:平面BCD;
(2)求异面直线AB与CD所成角的余弦值;
(3)求点E到平面ACD的距离.
⑴ 证明 连结OC
,.
在中,由已知可得
而,
A
C
D
O
B
E
y
z
x
即
∴平面.
(2)解 以O为原点,如图建立空间直角坐标系,
则
,
∴ 异面直线AB与CD所成角的余弦值为.
⑶解 设平面ACD的法向量为则
37
,
∴,令得是平面ACD的一个法向量.
又 ∴点E到平面ACD的距离 .
A
B
C
D
E
F
5.(广东省高明一中2009届高三上学期第四次月考)如图,
已知平面,平面,△为
等边三角形,,为的中点.
(1) 求证:平面;
(2) 求证:平面平面;
(3) 求直线和平面所成角的正弦值.
设,建立如图所示的坐标系,则
.
∵为的中点,∴.
(1) 证明 ,
∵,平面,∴平面.
(2) 证明 ∵,
∴,∴.
∴平面,又平面,
∴平面平面.
(3) 解 设平面的法向量为,由可得:
,取.
又,设和平面所成的角为,则
.
∴直线和平面所成角的正弦值为.
37
6. (2009年广东省广州市高三年级调研测试)如图,已知
等腰直角三角形,其中∠=90º,.
点A、D分别是、的中点,现将△沿着边
折起到△位置,使⊥,连结、.
(1)求证:⊥;
(2)求二面角的平面角的余弦值.
(1)证明 ∵点A、D分别是、的中点,
∴.
∴∠=90º.
∴.
∴ ,
∵,
∴⊥平面.
∵平面,
∴.
(2)解 建立如图所示的空间直角坐标系.
则(-1,0,0),(-2,1,0),(0,0,1).
∴=(-1,1,0),=(1,0,1),
设平面的法向量为=(x,y,z),则:
,
令,得,
∴=(1,1,-1).
显然,是平面的一个法向量,=().
∴cos<,>=.
∴二面角的平面角的余弦值是.
9月份更新
1. 连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB、CD的长度分别等于2
37
、4,M、N分别为AB、CD的中点,每条弦的两端都在球面上运动,有下列四个命题:
①弦AB、CD可能相交于点M ②弦AB、CD可能相交于点N ③MN的最大值为5 ④MN的最小值为l,其中真命题的个数为
A.1个 B.2个 C.3个 D.4个
答案 C
2.某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a+b的最大值为( )A. B. C. D.
答案 C
3.等边三角形与正方形有一公共边,二面角的余弦值为,分别是的中点,则所成角的余弦值等于
A
C
B
D
P
答案 .
4.如图,在三棱锥中,,,.
(Ⅰ)求证:;(Ⅱ)求二面角的大小;(Ⅲ)求点到平面的距离.
解法一:(Ⅰ)取中点,连结.,.,.
A
C
B
E
P
,平面.平面,.
(Ⅱ),,.又,.
又,即,且,平面.取中点.连结.
,.是在平面内的射影,.
A
C
B
D
P
H
是二面角的平面角.在中,,,,.二面角的大小为.
(Ⅲ)由(Ⅰ)知平面,平面平面.过作,垂足为.
平面平面,平面.的长即为点到平面
37
的距离.
A
C
B
P
z
x
y
H
E
由(Ⅰ)知,又,且,平面.平面,.
在中,,,
.. 点到平面的距离为.
解法二:(Ⅰ),,.又,.
,平面.平面,.
(Ⅱ)如图,以为原点建立空间直角坐标系.则.
设.,,.取中点,连结.
,,,.是二面角的平面角.
,,,
.二面角的大小为.
(Ⅲ),在平面内的射影为正的中心,且的长为点到平面的距离.
如(Ⅱ)建立空间直角坐标系.,点的坐标为..
点到平面的距离为.
5.如图,已知是棱长为的正方体,点在上,点在上,且.
37
(1)求证:四点共面;(4分);(2)若点在上,,点在上,,垂足为,求证:平面;(4分);(3)用表示截面和侧面所成的锐二面角的大小,求.
证明:(1)建立如图所示的坐标系,则,,,
所以,故,,共面.又它们有公共点,所以四点共面.
(2)如图,设,则,而,由题设得,
得.因为,,有,又,,所以,,从而,.故平面.
(3)设向量截面,于是,.
而,,得,,解得,,所以.又平面,所以和的夹角等于或(为锐角).
于是. 故.
2007—2008年联考题
1. (江西省鹰潭市2008届高三第一次模拟)已知斜三棱柱,,,在底面上的射影恰为的中点,又知.
(Ⅰ)求证:平面;
(Ⅱ)求到平面的距离;
37
(Ⅲ)求二面角的大小.
(Ⅰ)证明 如图,取的中点,则,∵,∴,
又平面,以为轴建立空间坐标系,
则,,,,,,
,,由,知,
又,从而平面.
(Ⅱ)解 由,得.设平面的法向量
为,,,,
设,则
∴点到平面的距离.
(Ⅲ)解 设面的法向量为,,,
∴
设,则,故,
根据法向量的方向可知二面角的大小为.
2. (山西大学附中2008届二月月考)正三棱柱所有棱长都是,是棱的中点,是棱的中点,交于点
(1)求证:;
(2)求二面角的大小(用反三角函数表示);
(3)求点到平面的距离.
(1)证明 建立如图所示,
∵
∴ , 即AE⊥A1D, AE⊥BD , ∴AE⊥面A1BD
(2)解 设面DA1B的法向量为
由 , ∴取
37
设面AA1B的法向量为 ,
由图可知二面角D—BA1—A为锐角,∴它的大小为arcos .
(3)解 ,平面A1BD的法向量取,
则B1到平面A1BD的距离d= .
3. (安徽省皖南八校2008届高三第一次联考)已知斜三棱柱
,,,
在底面上的射影恰为的中点,
又知。
(I)求证:平面;
(II)求到平面的距离;
(III)求二面角的大小。
(I)证明 如图,取的中点,则,因为,
所以,又平面,
以为轴建立空间坐标系,
则,,,
,,
,,
,由,知,
又,从而平面;
(II)解 由,得。
设平面的法向量为,,,
所以,设,则
37
所以点到平面的距离。
(III)解 再设平面的法向量为,,,
所以,设,则,
故,根据法向量的方向,
可知二面角的大小为。
4. ( 四川省成都市2008一诊) 如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=BC=2,E为PA的中点,过E作平行于底面的平面EFGH,分别与另外三条侧棱相交于点F、G、H. 已知底面ABCD为直角梯形,AD∥BC,AB⊥AD,∠BCD=135°.
(1) 求异面直线AF与BG所成的角的大小;
(2) 求平面APB与平面CPD所成的锐二面角的大小.
解 由题意可知:AP、AD、AB两两垂直,可建立空间直角坐标系A-xyz
由平面几何知识知:AD=4, D (0, 4, 0), B (2 , 0 , 0 ),
C ( 2, 2, 0 ), P (0, 0, 2), E (0, 0, 1), F (1 ,0, 1), G (1 ,1 ,1)
(1)=(1,0,1),=(-1,1,1)
∴·=0,
∴AF与BG所成角为 .
(2) 可证明AD⊥平面APB,
∴平面APB的法向量为n=(0,1,0)
设平面CPD的法向量为m=(1,y,z)
由 Þ
故m=(1,1,2)
∵cos=
∴平面APB与平面CPD所成的锐二面角的大小为arccos.
37
5. (安徽省淮南市2008届高三第一次模拟考试)如图,正三棱柱ABC-的底面边长是2,D是侧棱C的中点,直线AD与侧面所成的角为45°.
( 1 )求二面角A-BD-C的大小;
(2)求点C到平面ABD的距离.
解 (1)如图,建立空间直角坐标系.
则.
设为平面的法向量.
由 得.
取
又平面的一个法向量
.
结合图形可知,二面角的大小为.
(Ⅲ)由(Ⅱ)知
D
A1
D1
C1
B1
E1
B
A
C
P
O
点到平面的距离=.
6. (安徽省巢湖市2008届高三第二次教学质量检测)如图,
37
、分别是正四棱柱上、下底面的中
心,是的中点,.
(Ⅰ)求证:∥平面;
(Ⅱ)当时,求直线与平面所成角的大小;
z
x
y
D
A1
D1
C1
B1
E1
B
A
C
P
O
(Ⅲ) 当取何值时,在平面内的射影恰好为的重心?
以点为原点,直线所在直线分别为轴,
建立如图所示的空间直角坐标系,不妨设,
则得、、、、
(Ⅰ)证明 由上得、、
,设得
解得, ∴
, ∴∥平面
_
(Ⅱ)解 当时,由、得、、
设平面的法向量为,则由,得, ,∴直线与平面所成角的大小为.
(Ⅲ) 解 由(Ⅰ)知的重心为,则,
若在平面内的射影恰好为的重心,则有,解得
∴当时,在平面内的射影恰好为的重心.
7. (北京市东城区2008年高三综合练习二)如图,在四棱锥P—ABCD中,
37
平面PAB⊥平面ABCD,底面ABCD是边长为2的正方形,
△PAB等边三角形.
(1)求二面角B—AC—P的大小;
(2)求点A到平面PCD的距离.
解 (1)建立如图的空间直角坐标系O—xyz,
则A(-1,0,0),B(1,0,0),
则P(0,0,),C(1,2,0)
设为平面PAC的一个法向量,
则
又
令z=1,得
得
又是平面ABC的一个法向量,
设二面角B—AC—P的大小为,
则
(2)设为平面PCD的一个法向量.
则 由D(-1,2,0),可知),可得a=0,令,则c=2.
得,
设点A到平面PCD的距离为d,则
∴点A到平面PCD的距离为
8. (北京市十一学校2008届高三数学练习题)如图,
37
在正四棱锥中,,点在
棱上.
(Ⅰ)问点在何处时,,并加以证明;
(Ⅱ)当时,求点到平面的距离;
(Ⅲ)求二面角的大小.
解 (Ⅰ)当E为PC中点时,.
连接AC,且,由于四边形ABCD为正方形,
∴O为AC的中点,又E为中点,
∴OE为△ACP的中位线,
∴,又,
∴.
(Ⅱ)作,依题意是正方形的中心,如图建立空间坐标系.
则, , ,,.
∴ , ,
,,
设面的法向量为
,
点到平面的距离为.
(Ⅲ)设二面角的平面角为,平面的法向量为. 设平面的法向量为, .
37
.
9. (北京市西城区2008年4月高三抽样测试)如图,在三棱锥中,,,平面平面.
(Ⅰ)求证:;
(Ⅱ)求二面角的大小;
(Ⅲ)求异面直线和所成角的大小.
作于点,
平面平面,
平面.
过点作的平行线,交于点.
如图,以为原点,直线分别为轴,
轴,轴,建立空间直角坐标系 .
.
.
,
.
(Ⅰ)证明
.
又.
(Ⅱ)解 作于点,连结.
平面, 根据三垂线定理得 ,
是二面角的平面角.
在中, ,
37
从而,
,
即二面角的大小是.
(Ⅲ)解,
,
E
O1
O
D1
C1
B1
D
C
B
A
A1
异面直线和所成角的大小为arccos.
10.(广东地区2008年01月份期末试题) 如图,直四棱柱
ABCD—A1B1C1D1的高为3,底面是边长为4
且∠DAB=60°的菱形,AC∩BD=O,A1C1∩B1D1=O1,
E是O1A的中点.
(1)求二面角O1-BC-D的大小;
(2)求点E到平面O1BC的距离.
解 (1)∵OO1⊥平面AC,
∴OO1⊥OA,OO1⊥OB,又OA⊥OB,
建立如图所示的空间直角坐标系(如图)
∵底面ABCD是边长为4,∠DAB=60°的菱形,
∴OA=2,OB=2,
则A(2,0,0),B(0,2,0),C(-2,0,0),
O1(0,0,3)
设平面O1BC的法向量为=(x,y,z),
则⊥,⊥,
37
∴,则z=2,则x=-,y=3,
∴=(-,3,2),而平面AC的法向量=(0,0,3)
∴cos<,>=,
设O1-BC-D的平面角为α, ∴cosα=∴α=60°.
故二面角O1-BC-D为60°.
(2)设点E到平面O1BC的距离为d,
∵E是O1A的中点,∴=(-,0,),
则d=,∴点E到面O1BC的距离等于.
37