- 650.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
绝密★启用前
2017 年普通高等学校招生全国统一考试(新课标Ⅲ)
理科数学
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只
有一项是符合题目要求的。
1.已知集合 A= 2 2( , ) 1x y x y │ ,B= ( , )x y y x│ ,则 A B 中元素的个数为
A.3 B.2 C.1 D.0
2.设复数 z 满足(1+i)z=2i,则∣z∣=
A. 1
2 B. 2
2 C. 2 D.2
3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了 2014 年 1 月至
2016 年 12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在 7,8 月份
D.各年 1 月至 6 月的月接待游客量相对 7 月至 12 月,波动性更小,变化比较平稳
4.( x + y )(2 x - y )5 的展开式中 x 3 y 3 的系数为
A.-80 B.-40 C.40 D.80
5.已知双曲线 C:
2 2
2 2 1x y
a b
(a>0,b>0)的一条渐近线方程为 5
2y x ,且与椭圆
2 2
112 3
x y 有公共焦点,则 C 的方程为
A.
2 2
18 10
x y B.
2 2
14 5
x y C.
2 2
15 4
x y D.
2 2
14 3
x y
6.设函数 f(x)=cos(x+ 3
),则下列结论错误的是
A.f(x)的一个周期为−2π B.y=f(x)的图像关于直线 x= 8
3
对称
C.f(x+π)的一个零点为 x= 6
D.f(x)在( 2
,π)单调递减
7.执行下面的程序框图,为使输出 S 的值小于 91,则输入的正整数 N 的最小值为
A.5 B.4 C.3 D.2
8.已知圆柱的高为 1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的
体积为
A. π B. 3π
4
C. π
2
D. π
4
9.等差数列 na 的首项为 1,公差不为 0.若 a2,a3,a6 成等比数列,则 na 前 6 项的和
为
A.-24 B.-3 C.3 D.8
10.已知椭圆 C:
2 2
2 2 1x y
a b
,(a>b>0)的左、右顶点分别为 A1,A2,且以线段 A1A2 为
直径的圆与直线 2 0bx ay ab 相切,则 C 的离心率为
A. 6
3
B. 3
3
C. 2
3
D. 1
3
11.已知函数 2 1 1( ) 2 ( )x xf x x x a e e 有唯一零点,则 a=
A. 1
2
B. 1
3
C. 1
2
D.1
12.在矩形 ABCD 中,AB=1,AD=2,动点 P 在以点 C 为圆心且与 BD 相切的圆上.若 AP
=
AB
+ AD
,则 +的最大值为
A.3 B.2 2 C. 5 D.2
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
13.若 x , y 满足约束条件
y 0
2 0
0
x
x y
y
,则 z 3 4x y 的最小值为__________.
14.设等比数列 na 满足 a1 + a2 = –1, a1 – a3 = –3,则 a4 = ___________.
15.设函数 1 0( )
2 0x
x xf x
x
, ,
, ,
则满足 1( ) ( ) 12f x f x 的 x 的取值范围是_________。
16.a,b 为空间中两条互相垂直的直线,等腰直角三角形 ABC 的直角边 AC 所在直线与 a,
b 都垂直,斜边 AB 以直线 AC 为旋转轴旋转,有下列结论:
①当直线 AB 与 a 成 60°角时,AB 与 b 成 30°角;
②当直线 AB 与 a 成 60°角时,AB 与 b 成 60°角;
③直线 AB 与 a 所成角的最小值为 45°;
④直线 AB 与 a 所成角的最小值为 60°;
其中正确的是________。(填写所有正确结论的编号)
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题,
每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。
(一)必考题:共 60 分。
17.(12 分)
△
ABC 的内角 A,B,C 的对边分别为 a,b,c,已知 sinA+ 3 cosA=0,a=2 7 ,b=2.
(1)求 c;
(2)设 D 为 BC 边上一点,且 AD AC,求
△
ABD 的面积.
18.(12 分)
某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶 4 元,售价每瓶 6 元,
未售出的酸奶降价处理,以每瓶 2 元的价格当天全部处理完.根据往年销售经验,每天需求
量与当天最高气温(单位:℃)有关.如果最高气温不低于 25,需求量为 500 瓶;如果最
高气温位于区间[20,25),需求量为 300 瓶;如果最高气温低于 20,需求量为 200 瓶.为
了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40)
天数 2 16 36 25 7 4
以最高气温位于各区间的频率代替最高气温位于该区间的概率。
(1)求六月份这种酸奶一天的需求量 X(单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为 Y(单位:元),当六月份这种酸奶一天的
进货量 n(单位:瓶)为多少时,Y 的数学期望达到最大值?
19.(12 分)
如图,四面体 ABCD 中,
△
ABC 是正三角形,
△
ACD 是直角三角形,∠ABD=∠CBD,
AB=BD.
(1)证明:平面 ACD⊥平面 ABC;
(2)过 AC 的平面交 BD 于点 E,若平面 AEC 把四面体 ABCD 分成体积相等的两部分,
求二面角 D–AE–C 的余弦值.
20.(12 分)
已知抛物线 C:y2=2x,过点(2,0)的直线 l 交 C 与 A,B 两点,圆 M 是以线段 AB 为直
径的圆.
(1)证明:坐标原点 O 在圆 M 上;
(2)设圆 M 过点 P(4,-2),求直线 l 与圆 M 的方程.
21.(12 分)
已知函数 ( )f x =x﹣1﹣alnx.
(1)若 ( ) 0f x ,求 a 的值;
(2)设 m 为整数,且对于任意正整数 n, 2
1 1 11+ + 1+ )2 2 2n( )(1 ) ( ﹤m,求 m 的最小
值.
(二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第
一题计分。
22.[选修 4-4:坐标系与参数方程](10 分)
在直角坐标系 xOy 中,直线 l1 的参数方程为 2+ ,
,
x t
y kt
(t 为参数),直线 l2 的参数方程
为
2 ,
,
x m
mmy k
( 为参数).设 l1 与 l2 的交点为 P,当 k 变化时,P 的轨迹为曲线 C.
(1)写出 C 的普通方程;
(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设 l3:ρ(cosθ+sinθ)- 2 =0,
M 为 l3 与 C 的交点,求 M 的极径.
23.[选修 4-5:不等式选讲](10 分)
已知函数 f(x)=│x+1│–│x–2│.
(1)求不等式 f(x)≥1 的解集;
(2)若不等式 f(x)≥x2–x +m 的解集非空,求 m 的取值范围.
绝密★启用前
2017 年普通高等学校招生全国统一考试
理科数学试题正式答案
一、选择题
1.B 2.C 3.A 4.C 5.B 6.D
7.D 8.B 9.A 10.A 11.C 12.A
二、填空题
13. -1 14. -8 15. 1(- ,+ )4 16. ②③
三、解答题
17.解:
(1)由已知得 tanA= 23, 所 以 A= 3
在 △ABC 中,由余弦定理得
2 2228 4 4 cos +2 -24=03
c 6 c
c c c c
,即
解得 (舍去), =4
(2)有题设可得 = , 所 以2 6C A D B A D B A C C A D
故△ABD 面积与△ACD 面积的比值为
1 sin2 6 11
2
AB AD
AC AD
又△ABC 的面积为 1 4 2 sin 2 3, 所 以 的 面 积 为 3.2 BAC ABD
18.解:
(1)由题意知, X 所有的可能取值为 200,300,500,由表格数据知
2 16200 0.290P X
36300 0.490P X
25 7 4500 0.490P X .
因此 X 的分布列为
X 200 300 500
P 0.2 0.4 0.4
⑵由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑 200 500n≤ ≤
当 300 500n≤ ≤ 时,
若最高气温不低于25,则Y=6n-4n=2n
若最高气温位于区间 20,,25 ,则Y=6×300+2(n-300)-4n=1200-2n;
若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n;
因此EY=2n×0.4+(1200-2n)×0.4+(800-2n) ×0.2=640-0.4n
当 200 300n ≤ 时,
若最高气温不低于20,则Y=6n-4n=2n;
若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n;
因此EY=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n
所以n=300时,Y的数学期望达到最大值,最大值为520元。
19.解:
(1)由题设可得, ,ABD CBD AD DC 从而
又 ACD 是直角三角形,所以 0=90ACD
取AC的中点O,连接DO,BO,则DO⊥AC,DO=AO
又由于 ABC BO AC 是正三角形,故
所以 DOB D AC B 为二面角 的平面角
2 2 2
2 2 2 2 2 2 0
,
Rt AOB BO AO AB
AB BD
BO DO BO AO AB BD
ACD ABC
在 中,
又 所以
,故 DOB=90
所以平面 平面
(2)
由题设及(1)知,OA, OB, OD 两两垂直,以 O 为坐标原点,OA
的方向为 x 轴正方向,OA
为单位长,建立如图所示的空间直角坐标系 O xyz- ,则
(1,0,0), (0,3,0), ( 1,0,0), (0,0,1)A B C D
由题设知,四面体 ABCE 的体积为四面体 ABCD 的体积的 1
2 ,从而 E 到平面 ABC 的距离
为 D 到平面 ABC 的距离的 1
2 ,即 E 为 DB 的中点,得 E
3 10, ,2 2
.故
3 11,0,1 , 2,0,0 , 1, ,2 2AD AC AE
设 = x,y,zn 是平面 DAE 的法向量,则
00,即 3 1 00, 2 2
x zAD
x y zAE
n
n
可取 31 13= , ,
n
设 m 是平面 AEC 的法向量,则
0,
0,
AC
AE
m
m
同理可得 0 1 3, , m
则 7
7cos , n mn m n m
所以二面角 D-AE-C 的余弦值为 7
7
20.解
(1)设 1 1 2 2 2A x ,y ,B x ,y ,l : x my
由 2
2
2
x my
y x
可得 2
1 22 4 0 则 4y my , y y
又 22 2
1 21 2
1 2 1 2= = 故 =2 2 4
y yy yx ,x , x x =4
因此 OA 的斜率与 OB 的斜率之积为 1 2
1 2
-4= =-14
y y
x x
所以 OA⊥OB
故坐标原点 O 在圆 M 上.
(2)由(1)可得 2
1 2 1 2 1 2+ =2 + = + +4=2 4y y m,x x m y y m
故圆心 M 的坐标为 2 +2,m m ,圆 M 的半径 22 22r m m
由于圆 M 过点 P(4,-2),因此 0AP BP
,故 1 2 1 24 4 2 2 0x x y y
即 1 2 1 2 1 2 1 24 + 2 20 0x x x x y y y y
由(1)可得 1 2 1 2=-4, =4y y x x ,
所以 22 1 0m m ,解得 11或 2m m .
当 m=1 时,直线 l 的方程为 x-y-2=0,圆心 M 的坐标为(3,1),圆 M 的半径为 10 ,圆 M
的方程为 2 23 1 10x y
当 1
2m 时,直线 l 的方程为2 4 0x y ,圆心 M 的坐标为 9 1,-4 2
,圆 M 的半径为
85
4 ,圆 M 的方程为
2 29 1 85+ +4 2 16x y
21.解:(1) f x 的定义域为 0,+ .
①若 0a ,因为 1 1=- + 2<02 2f aln
,所以不满足题意;
②若 >0a ,由 1 a x af ' x x x
知,当 0x ,a 时, <0f ' x ;当 ,+x a 时,
>0f ' x ,所以 f x 在 0,a 单调递减,在 ,+a 单调递增,故 x=a 是 f x 在
0,+x 的唯一最小值点.
由于 1 0f ,所以当且仅当 a=1 时, 0f x .
故 a=1
(2)由(1)知当 1,+x 时, 1 >0x ln x
令 1=1+ 2nx 得 1 11+ <2 2n nln
,从而
2 2
1 1 1 1 1 1 11+ + 1+ + + 1+ < + + + =1- <12 2 2 2 2 2 2n n nln ln ln
故 2
1 1 11+ 1+ 1+ <2 2 2n e
而 2 3
1 1 11+ 1+ 1+ >22 2 2
,所以 m 的最小值为 3.
22.解:
( 1 ) 消 去 参 数 t 得 l1 的 普 通 方 程 1 2l : y k x ; 消 去 参 数 m 得 l2 的 普 通 方 程
2
1 2l : y xk
设 P(x,y),由题设得
2
1 2
y k x
y xk
,消去 k 得 2 2 4 0x y y .
所以 C 的普通方程为 2 2 4 0x y y
(2)C 的极坐标方程为 2 2 2 4 0< <2cos sin ,r q q q p q p
联立
2 2 2 4
+ - 2=0
cos sin
cos sin
r q q
r q q
得 =2 +cos sin cos sinq q q q .
故 1
3tanq ,从而 2 29 1= , =10 10cos sinq q
代入 2 2 2- =4cos sinr q q 得 2 =5r ,所以交点 M 的极径为 5 .
23.解:
(1)
3 < 1
2 1 1 2
3 >2
, x
f x x , x
, x
当 < 1x 时, 1f x 无解;
当 1 2x 时,由 1f x 得,2 1 1x ,解得1 2x
当 >2x 时,由 1f x 解得 >2x .
所以 1f x 的解集为 1x x .
(2)由 2f x x x m 得 21 2m x x x x ,而
2 2
2
1 2 +1+ 2
3 5=- - +2 4
5
4
x x x x x x x x
x
且当 3
2x 时, 2 51 2 = 4x x x x .
故 m 的取值范围为 5- ,4