- 1.01 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2008年普通高等学校招生全国统一考试 数学(北京卷)
第Ⅰ卷(选择题 共40分)
一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
1.已知全集,集合,,那么集合等于( )
A. B.
C. D.
2.若,,,则( )
A. B. C. D.
3.“函数存在反函数”是“函数在上为增函数”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
4.若点到直线的距离比它到点的距离小1,则点的轨迹为( )
A.圆 B.椭圆 C.双曲线 D.抛物线
5.若实数满足则的最小值是( )
A.0 B.1 C. D.9
6.已知数列对任意的满足,且,那么等于( )
A. B. C. D.
7.过直线上的一点作圆的两条切线,当直线关于对称时,它们之间的夹角为( )
A. B. C. D.
8.如图,动点在正方体的对角线上.过点作垂直于平面的直线,与正方体表面相交于.设,,则函数的图象大致是( )
A
B
C
D
M
N
P
A1
B1
C1
D1
y
x
A.
O
y
x
B.
O
y
x
C.
O
y
x
D.
O
第Ⅱ卷(共110分)
二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.
9.已知,其中是虚数单位,那么实数 ___________.
10.已知向量与的夹角为,且,那么的值为 _________ .
11.若展开式的各项系数之和为32,则_______ ,其展开式中的常数项为 ________ .(用数字作答)
2
B
C
A
y
x
1
O
3
4
5
6
1
2
3
4
12.如图,函数的图象是折线段,其中的坐标分别为,则________; ________.(用数字作答)
13.已知函数,对于上的任意,有如下条件:①; ②; ③.其中能使恒成立的条件序号是 _________ .
14.某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第棵树种植在点处,其中,,当时,
表示非负实数的整数部分,例如,.
按此方案,第6棵树种植点的坐标应为 __________ ;第2008棵树种植点的坐标应为________ .
三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.
15.(本小题共13分)
已知函数()的最小正周期为.
(Ⅰ)求的值;
(Ⅱ)求函数在区间上的取值范围.
16.(本小题共14分)
A
C
B
P
如图,在三棱锥中,,,,.
(Ⅰ)求证:;
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
17.(本小题共13分)
甲、乙等五名奥运志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者.
(Ⅰ)求甲、乙两人同时参加岗位服务的概率;
(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;
(Ⅲ)设随机变量为这五名志愿者中参加岗位服务的人数,求的分布列.
18.(本小题共13分)已知函数,求导函数,并确定的单调区间.
19.(本小题共14分)
已知菱形的顶点在椭圆上,对角线所在直线的斜率为1.
(Ⅰ)当直线过点时,求直线的方程;
(Ⅱ)当时,求菱形面积的最大值.
20.(本小题共13分)
对于每项均是正整数的数列,定义变换,将数列变换成数列
.
对于每项均是非负整数的数列,定义变换,将数列各项从大到小排列,然后去掉所有为零的项,得到数列;
又定义.
设是每项均为正整数的有穷数列,令.
(Ⅰ)如果数列为5,3,2,写出数列;
(Ⅱ)对于每项均是正整数的有穷数列,证明;
(Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列,存在正整数,当时,.
参考答案
一、选择题(本大题共8小题,每小题5分,共40分)
1.D 2.A 3.B 4.D 5.B 6.C 7.C 8.B
二、填空题(本大题共6小题,每小题5分,共30分)
9. 10. 11.5 10 12.
13.② 14.
三、解答题(本大题共6小题,共80分)
15.(共13分)
解:(Ⅰ)
.
因为函数的最小正周期为,且,所以,解得.
(Ⅱ)由(Ⅰ)得.
因为,所以,所以,
因此,即的取值范围为.
16.(共14分)
A
C
B
D
P
解法一:
(Ⅰ)取中点,连结.
,
.
,
.
A
C
B
E
P
,
平面.
平面,
.
(Ⅱ),,
.
又,
.
又,即,且,
平面.
取中点.连结.
,.
是在平面内的射影,
.
是二面角的平面角.
在中,,,,
.
A
C
B
D
P
H
二面角的大小为.
(Ⅲ)由(Ⅰ)知平面,
平面平面.
过作,垂足为.
平面平面,
平面.
的长即为点到平面的距离.
由(Ⅰ)知,又,且,
平面.
平面,
.
在中,,,
.
.
点到平面的距离为.
17.(共13分)
解:(Ⅰ)记甲、乙两人同时参加岗位服务为事件,那么,
即甲、乙两人同时参加岗位服务的概率是.
(Ⅱ)记甲、乙两人同时参加同一岗位服务为事件,那么,
所以,甲、乙两人不在同一岗位服务的概率是.
(Ⅲ)随机变量可能取的值为1,2.事件“”是指有两人同时参加岗位服务,
则.所以,的分布列是
1
3
18.(共13分)
解:
.
令,得.
当,即时,的变化情况如下表:
0
当,即时,的变化情况如下表:
0
所以,当时,函数在上单调递减,在上单调递增,
在上单调递减.
当时,函数在上单调递减,在上单调递增,在上单调递减.
当,即时,,所以函数在上单调递减,在上单调递减.
19.(共14分)
解:(Ⅰ)由题意得直线的方程为.因为四边形为菱形,所以.
于是可设直线的方程为.由得.
因为在椭圆上,所以,解得.
设两点坐标分别为,
则,,,.所以.
所以的中点坐标为.由四边形为菱形可知,点在直线上,
所以,解得.所以直线的方程为,即.
(Ⅱ)因为四边形为菱形,且,
所以.所以菱形的面积.
由(Ⅰ)可得,
所以.
所以当时,菱形的面积取得最大值.
20.(共13分)
(Ⅰ)解:,,;,
.
(Ⅱ)证明:设每项均是正整数的有穷数列为,
则为,,,,,
从而
.
又,
所以
,
故.
(Ⅲ)证明:设是每项均为非负整数的数列.
当存在,使得时,交换数列的第项与第项得到数列,
则.
当存在,使得时,若记数列为,
则.所以.
从而对于任意给定的数列,由
可知.又由(Ⅱ)可知,所以.
即对于,要么有,要么有.
因为是大于2的整数,所以经过有限步后,必有.
即存在正整数,当时,.