• 374.50 KB
  • 2021-05-13 发布

2019届高考数学二轮复习 专题 函数的图象和性质学案(无答案)文

  • 4页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
函数的图象和性质 学习目标 ‎【目标分解一】 熟练进行函数图象的判断与应用 ‎【目标分解二】 能进行函数性质的综合应用 重点 ‎ 函数性质的判断与应用 ‎【课前自主复习区】‎ ‎■核心知识储备 提炼1函数的奇偶性 ‎(1)若函数y=f(x)为奇(偶)函数,则f(-x)= (f(-x)= ).‎ ‎(2)奇函数y=f(x)若在x=0处有意义,则必有f(0)= ‎ ‎(3)判断函数的奇偶性需注意:一是判断定义域是 ;二是若所给函数的解析式较为复杂,应先化简;三是判断f(-x)=-f(x),还是f(-x)=f(x),有时需用其等价形式f(-x)±f(x)=0来判断.‎ ‎(4)奇函数的图象关于原点 ,偶函数的图象关于 轴对称.‎ ‎(5)奇函数在关于原点对称的区间上的单调性 ,偶函数在关于原点对称的区间上的单调性 .‎ 提炼2 函数的周期性 ‎(1)若函数y=f(x)满足f(a+x)=f(x-a)(a≠0),则函数y=f(x)是以 为周期的周期性函数.‎ ‎(2)若奇函数y=f(x)满足f(a+x)=f(a-x)(a≠0),则函数y=f(x)是以 |为周期的周期性函数.‎ ‎(3)若偶函数y=f(x)满足f(a+x)=f(a-x)(a≠0),则函数y=f(x)是以 |为周期的周期性函数.‎ ‎(4)若f(a+x)=-f(x)(a≠0),则函数y=f(x)是以 为周期的周期性函数.‎ ‎(5)若y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是以2|b-a|为周期的周期性函数.‎ 提炼3 函数的图象 ‎(1)由解析式确定函数图象.此类问题往往需要化简函数解析式,利用函数的性质(单调性、奇偶性、过定点等)判断,常用排除法.‎ ‎(2)已知函数图象确定相关函数的图象.此类问题主要考查函数图象的变换(如平移变换、对称变换等),要注意函数y=f(x)与y=f(-x)、y=-f(x)、y=-f(-x)、y=f(|x|)、y=|f(x)|等的相互关系.‎ ‎(3)借助动点探究函数图象.解决此类问题可以根据已知条件求出解析式后再判断函数的图象;也可采用“以静观动”,即将动点处于某些特殊的位置处考察图象的变化特征,从而作出选择.‎ ‎[高考真题回访]‎ 回访1 函数的奇偶性与周期性 ‎1.(2014·全国卷Ⅰ)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是(  )‎ 4‎ A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数 C.f(x)|g(x)|是奇函数 D.|f(x)g(x)|是奇函数 ‎2.(2017·全国卷Ⅱ)已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0)时,f(x)=2x3+x2,则f(2)=________.‎ 回访2 函数的图象 ‎3.(2015·全国卷Ⅰ)设函数y=f(x)的图象与y=2x+a的图象关于直线y=-x对称,且f(-2)+f(-4)=1,则a=(  )‎ A.-1  B.‎1  ‎C.2   D.4‎ ‎4.(2017·全国卷Ⅰ)函数y=的部分图象大致为(  )‎ 回访3 函数的单调性 ‎5.(2017·全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是(  )‎ A.(-∞,-2) B.(-∞,1) C.(1,+∞) D.(4,+∞)‎ ‎6.(2015·全国卷Ⅱ)设函数f(x)=ln(1+|x|)-,则使得f(x)>f(2x-1)成立的x的取值范围是(  )‎ A. B.∪(1,+∞) C. D.∪ ‎【课堂互动探究区】‎ ‎【目标分解一】函数图象的判断与应用 ‎【例1】】(1)(2017·全国卷Ⅲ)函数y=1+x+的部分图象大致为(  )‎ ‎★(2)(2016·全国卷Ⅱ)已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x2-2x-3|与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则 =(  )‎ 4‎ A.0   B.m C.‎2m   D.‎‎4m 函数图象的判断方法 ‎1.根据函数的定义域判断图象的左右位置,根据函数的值域判断图象的上下位置.‎ ‎2.根据函数的单调性,判断图象的变化趋势.3.根据函数的奇偶性,判断图象的对称性.‎ ‎4.根据函数的周期性,判断图象的循环往复.5.取特殊值代入,进行检验.‎ ‎【我会做】(1)(2016·济南模拟)函数y=(-π≤x≤π)的大致图象为(  ) ‎ A B. CD.‎ ‎.           ‎ ‎★(2)(2017·东北三省四市联考)对∀x∈,23x≤logax+1恒成立,则实数a的取值范围是(  )‎ A. B. C. D. ‎【目标分解二】函数性质的综合应用 题型分析:函数性质的综合应用是高考的热点内容,解决此类问题时,性质的判断是关键,应用是难点.‎ ‎【例2】(1)(2017·全国卷Ⅰ)已知函数f(x)=ln x+ln(2-x),则(  )‎ A.f(x)在(0,2)单调递增 B.f(x)在(0,2)单调递减 C.y=f(x)的图象关于直线x=1对称 D.y=f(x)的图象关于点(1,0)对称 函数性质的综合应用类型 ‎1.函数单调性与奇偶性的综合.注意奇、偶函数图象的对称性,以及奇、偶函数在关于原点对称的区间上单调性的关系.‎ ‎2.周期性与奇偶性的综合.此类问题多为求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.‎ ‎3.单调性、奇偶性与周期性的综合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.‎ ‎【我会做】‎ ‎ ★(1)(2016·长春二模)已知函数f(x)是定义在R上的奇函数,且在[0,+∞)上是增函数,则不等式 4‎ <f(1)的解集为(  )‎ A. B.(0,e) C. D.(e,+∞)‎ ‎★★(2)已知函数y=f(x)是定义在R上的奇函数,∀x∈R,f(x-1)=f(x+1)成立,当x∈(0,1)且x1≠x2时,有<0.给出下列命题:‎ ‎①f(1)=0;‎ ‎②f(x)在[-2,2]上有5个零点;‎ ‎③点(2 014,0)是函数y=f(x)图象的一个对称中心;‎ ‎④直线x=2 014是函数y=f(x)图象的一条对称轴.‎ 则正确命题的序号是________. ‎ 4‎