- 1.66 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
高考物理压轴题
(30道)
1(20分)
如图12所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s2 ,求:
(1)判断物体带电性质,正电荷还是负电荷?
(2)物体与挡板碰撞前后的速度v1和v2
(3)磁感应强度B的大小
图12
(4)电场强度E的大小和方向
1.(1)由于物体返回后在磁场中无电场,且仍做匀速运动,故知摩擦力为0,所以物体带正电荷.且:mg=qBv2…………………………………………………………①
(2)离开电场后,按动能定理,有:-μmg=0-mv2………………………………②
由①式得:v2=2 m/s
(3)代入前式①求得:B= T
(4)由于电荷由P运动到C点做匀加速运动,可知电场强度方向水平向右,且:(Eq-μmg)mv12-0……………………………………………③
进入电磁场后做匀速运动,故有:Eq=μ(qBv1+mg)……………………………④
由以上③④两式得:
2(10分)如图2—14所示,光滑水平桌面上有长L=2m的木板C,质量mc=5kg,在其正中央并排放着两个小滑块A和B,mA=1kg,mB=4kg,开始时三物都静止.在A、B间有少量塑胶炸药,爆炸后A以速度6m/s水平向左运动,A、B中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求:
(1)当两滑块A、B都与挡板碰撞后,C的速度是多大?
(2)到A、B都与挡板碰撞为止,C的位移为多少?
2(1)A、B、C系统所受合外力为零,故系统动量守恒,且总动量为零,故两物块与挡板碰撞后,C的速度为零,即
(2)炸药爆炸时有
解得
又
当sA=1 m时sB=0.25m,即当A、C相撞时B与C右板相距
A、C相撞时有:
解得=1m/s,方向向左
而=1.5m/s,方向向右,两者相距0.75m,故到A,B都与挡板碰撞为止,C的位移为
m19.
3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F,放手后,木板沿斜面下滑,稳定后弹簧示数为F,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上)
3固定时示数为F,对小球F=mgsinθ ①
整体下滑:(M+m)sinθ-μ(M+m)gcosθ=(M+m)a ②
下滑时,对小球:mgsinθ-F=ma ③
由式①、式②、式③得
μ=tan θ
4有一倾角为θ的斜面,其底端固定一挡板M,另有三个木块A、B和C,它们的质
量分别为m=m=m,m=3 m,它们与斜面间的动摩擦因数都相同.其中木块A连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M相连,如图所示.开始时,木块A静止在P处,弹簧处于自然伸长状态.木块B在Q点以初速度v向下运动,P、Q间的距离为L.已知木块B在下滑过程中做匀速直线运动,与木块A相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B向上运动恰好能回到Q点.若木块A静止于P点,木块C从Q点开始以初速度向下运动,经历同样过程,最后木块C停在斜面上的R点,求P、R间的距离L′的大小。
4.木块B下滑做匀速直线运动,有mgsinθ=μmgcosθ
B和A相撞前后,总动量守恒,mv=2mv,所以
v=
设两木块向下压缩弹簧的最大长度为s,两木块被弹簧弹回到P点时的速度为v,则
μ2mgcosθ·2s=
两木块在P点处分开后,木块B上滑到Q点的过程:
(mgsinθ+μmgcosθ)L=
木块C与A碰撞前后,总动量守恒,则3m·,所以
v′=v
设木块C和A压缩弹簧的最大长度为s′,两木块被弹簧弹回到P点时的速度为v,则μ4mgcosθ·2s′=
木块C与A在P点处分开后,木块C上滑到R点的过程:
(3mgsinθ+μ3mgcosθ)L′=
在木块压缩弹簧的过程中,重力对木块所做的功与摩擦力对木块所做的功大小相等,因此弹簧被压缩而具有的最大弹性势能等于开始压缩弹簧时两木块的总动能.
因此,木块B和A压缩弹簧的初动能E木块C与A压缩弹簧的初动能E即E
因此,弹簧前后两次的最大压缩量相等,即s=s′
综上,得L′=L-
5
如图,足够长的水平传送带始终以大小为v=3m/s的速度向左运动,传送带上有一质量为M=2kg的小木盒A,A与传送带之间的动摩擦因数为μ=0.3,开始时,A与传送带之间保持相对静止。先后相隔△t=3s有两个光滑的质量为m=1kg的小球B
自传送带的左端出发,以v0=15m/s的速度在传送带上向右运动。第1个球与木盒相遇后,球立即进入盒中与盒保持相对静止,第2个球出发后历时△t1=1s/3而与木盒相遇。求(取g=10m/s2)
(1)第1个球与木盒相遇后瞬间,两者共同运动的速度时多大?
(2)第1个球出发后经过多长时间与木盒相遇?
B
A
v
v0
(3)自木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量是多少?
5
(1)设第1个球与木盒相遇后瞬间,两者共同运动的速度为v1,根据动量守恒定律:
(1分)
代入数据,解得: v1=3m/s (1分)
(2)设第1个球与木盒的相遇点离传送带左端的距离为s,第1个球经过t0与木盒相遇,则: (1分)
设第1个球进入木盒后两者共同运动的加速度为a,根据牛顿第二定律:
得: (1分)
设木盒减速运动的时间为t1,加速到与传送带相同的速度的时间为t2,则:
=1s (1分)
故木盒在2s内的位移为零 (1分)
依题意: (2分)
代入数据,解得: s=7.5m t0=0.5s (1分)
(3)自木盒与第1个球相遇至与第2个球相遇的这一过程中,传送带的位移为S,木盒的位移为s1,则: (1分)
(1分)
故木盒相对与传送带的位移:
则木盒与传送带间的摩擦而产生的热量是: (2分)
6.如图所示,两平行金属板A、B长l=8cm,两板间距离d=8cm,A板比B板电势高300V,即UAB=300V。一带正电的粒子电量q=10-10C,质量m=10-20kg,从R点沿电场中心线垂直电场线飞入电场,初速度v0=2×106m/s,粒子飞出平行板电场后经过界面MN、PS间的无电场区域后,进入固定在中心线上的O点的点电荷Q形成的电场区域(设界面PS右边点电荷的电场分布不受界面的影响)。已知两界面MN、PS相距为L=12cm,粒子穿过界面PS最后垂直打在放置于中心线上的荧光屏EF上。求(静电力常数k=9×109N·m2/C2)
B
A
v0
R
M
N
L
P
S
O
E
F
l
(1)粒子穿过界面PS时偏离中心线RO的距离多远?
(2)点电荷的电量。
6
(1)设粒子从电场中飞出时的侧向位移为h, 穿过界面PS时偏离中心线OR的距离为y,则: h=at2/2 (1分)
即: (1分)
代入数据,解得: h=0.03m=3cm (1分)
带电粒子在离开电场后将做匀速直线运动,由相似三角形知识得: (1分)
代入数据,解得: y=0.12m=12cm (1分)
(2)设粒子从电场中飞出时沿电场方向的速度为vy,则:vy=at=
代入数据,解得: vy=1.5×106m/s (1分)
所以粒子从电场中飞出时沿电场方向的速度为:
(1分)
设粒子从电场中飞出时的速度方向与水平方向的夹角为θ
,则:
(1分)
因为粒子穿过界面PS最后垂直打在放置于中心线上的荧光屏上,所以该带电粒子在穿过界面PS后将绕点电荷Q作匀速圆周运动,其半径与速度方向垂直。
匀速圆周运动的半径: (1分)
由: (2分)
代入数据,解得: Q=1.04×10-8C (1分)
7光滑水平面上放有如图所示的用绝缘材料制成的L形滑板(平面部分足够长),质量为4m,距滑板的A壁为L1距离的B处放有一质量为m,电量为+q的大小不计的小物体,物体与板面的摩擦不计.整个装置置于场强为E的匀强电场中,初始时刻,滑板与物体都静止.试问:
(1)释放小物体,第一次与滑板A壁碰前物体的速度v1,
多大?
(2)若物体与A壁碰后相对水平面的速度大小为碰前速率
的3/5,则物体在第二次跟A碰撞之前,滑板相对于
水平面的速度v2和物体相对于水平面的速度v3分别为
多大?
(3)物体从开始到第二次碰撞前,电场力做功为多大?(设碰撞经历时间极短且无能量损失)
7(1)释放小物体,物体在电场力作用下水平向右运动,此时,滑板静止不动,对于小物体,
由动能定理得:
(2)碰后小物体反弹,由动量守恒定律:得 得 .
之后,滑板以v2匀速运动,直到与物体第二次碰撞,从第一次碰撞到第二次碰撞时,物体与滑板
位移相等、时间相等、平均速度相等
(3)电场力做功等于系统所增加的动能
8如图(甲)所示,两水平放置的平行金属板C、D相距很近,上面分别开有小孔 O和O',水平放置的平行金属导轨P、Q与金属板C、D接触良好,且导轨垂直放在磁感强度为B1=10T的匀强磁场中,导轨间距L=0.50m,金属棒AB紧贴着导轨沿平行导轨方向在磁场中做往复运动,其速度图象如图(乙),若规定向右运动速度方向为正方向.从t=0时刻开始,由C板小孔O处连续不断地以垂直于C板方向飘入质量为m=3.2×10 -21kg、电量q=1.6×10 -19C的带正电的粒子(设飘入速度很小,可视为零).在D板外侧有以MN为边界的匀强磁场B2=10T,MN与D相距d=10cm,B1
和B2方向如图所示(粒子重力及其相互作用不计),求
(1)0到4.Os内哪些时刻从O处飘入的粒子能穿过电场并飞出磁场边界MN?
(2)粒子从边界MN射出来的位置之间最大的距离为多少?
8.(1)只有当CD板间的电场力方向向上即AB棒向右运动时,粒子才可能从O运动到O’,而
粒子要飞出磁场边界MN最小速度v0必须满足: ①
设CD间的电压为U,则 ②
解①②得 U=25V,又U=ε=B1Lv 解得v=5m/s.
所以根据(乙)图可以推断在0.25s t0时,a3 =– g,越来越大,加速度方向向上 (1分)
22(12分)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。在x轴上方空间的第一、第二象限内,既无电场也无磁场,在第三象限,存在沿y轴正方向的匀强电场和垂直xy平面(纸面)向里的匀强磁场。在第四象限,存在沿y轴负方向,场强大小与第三象限电场场强相等的匀强电场。一质量为m、电量为q的带电质点,从y轴上y=h处的p点以一定的水平初速度沿x轴负方向进入第二象限。然后经过x轴上x=-2h处的p
点进入第三象限,带电质点恰好能做匀速圆周运动。之后经过y轴上y=-2h处的p点进入第四象限。已知重力加速度为g。求:
(1)粒子到达p点时速度的大小和方向;
(2)第三象限空间中电场强度和磁感应强度的大小;
(3)带电质点在第四象限空间运动过程中最小速度的大小和方向。
22.解:(1)质点从P到P,由平抛运动规律
h=gt
v v
求出v=
方向与x轴负方向成45°角
(2)质点从P到P,重力与电场力平衡,洛仑兹力提供向心力
Eq=mg
Bqv=m
(2R)=(2h)+(2h)
解得E= B=
(3)质点进入第四象限,水平方向做匀速直线运动,竖直方向做匀速直线运动。当竖直方向的速度减小到0,此时质点速度最小,即v在水平方向的分量
v°=
方向沿x轴正方向
23.(20分)如图所示,在非常高的光滑、绝缘水平高台边缘,静置一个不带电的小金属块B,另有一与B完全相同的带电量为+q的小金属块A以初速度v0向B运动,A、B的质量均为m。A与B相碰撞后,两物块立即粘在一起,并从台上飞出。已知在高台边缘的右面空间中存在水平向左的匀强电场,场强大小E=2mg/q。求:
(1)A、B一起运动过程中距高台边缘的最大水平距离
(2)A、B运动过程的最小速度为多大
(3)从开始到A、B运动到距高台边缘最大水平距离的过程 A损失的机械能为多大?
23.解:(20分)
(1)由动量守恒定律:mυ0=2mυ………………………………2分
碰后水平方向:qE=2ma …………………2分
-2aXm=0-υ2………………………………2分
得:…………………………………………1分
(2)在t时刻,A、B的水平方向的速度为…………………1分
竖直方向的速度为υγ=gt……………………………1分 合速度为:……………………………………………2分
解得υ合的最小值:……………………………………3分
(3)碰撞过程中A损失的机械能:……2分
碰后到距高台边缘最大水平距离的过程中A损失的机械能:
……………………………………2分
从开始到A、B运动到距离高台边缘最大水平距离的过程中A损失的机械能为:
………………………………………2分
24.如图11所示,在真空区域内,有宽度为L的匀强磁场,磁感应强度为B,磁场方向垂直纸面向里,MN、PQ是磁场的边界。质量为m,带电量为-q的粒子,先后两次沿着与MN夹角为θ(0<θ<90º)的方向垂直磁感线射入匀强磁场B中,第一次,粒子是经电压U1加速后射入磁场,粒子刚好没能从PQ
边界射出磁场。第二次粒子是经电压U2加速后射入磁场,粒子则刚好垂直PQ射出磁场。不计重力的影响,粒子加速前速度认为是零,求:
(1)为使粒子经电压U2加速射入磁场后沿直线运动,直至射出PQ边界,可在磁场区域加一匀强电场,求该电场的场强大小和方向。
(2)加速电压的值。
24(20分)
(1)如图答1所示,经电压加速后以速度射入磁场,粒子刚好垂直PQ射出磁场,可确定粒子在磁场中做匀速圆周运动的圆心在PQ边界线的O点,半径与磁场宽L的关系式为
(2分),又 (2分),解得 (2分)
加匀强电场后,粒子在磁场中沿直线运动射出PQ边界的条件为Eq=Bq(2分),电场力的方向与磁场力的方向相反。 (2分)
由此可得出
,E的方向垂直磁场方向斜向右下(2分),与磁场边界夹角为(2分),如图答2所示。
(2)经电压加速后粒子射入磁场后刚好不能从PQ边界射出磁场,表明在磁场中做匀速圆周运动的轨迹与PQ边界相切,要确定粒子做匀速圆周运动的圆心O的位置,如图答3所示,圆半径与L的关系式为: (2分)
又,解得 (2分)
由于,,所以 (2分
25.(20分)空间存在着以x=0平面为分界面的两个匀强磁场,左右两边磁场的磁感应强度分别为B1和B2,且B1:B2=4:3,方向如图所示。现在原点O处一静止的中性原子,突然分裂成两个带电粒子a和b,已知a带正电荷,分裂时初速度方向为沿x轴正方向,若a粒子在第四次经过y轴时,恰好与b粒子第一次相遇。求:
(1)a粒子在磁场B1中作圆周运动的半径与b粒子在磁场B2中圆周运动的半径之比。
(2)a粒子和b粒子的质量之比。
25、(20分)(1)原子为中性,分裂后一定有qa=-qb(b一定带负电) (2分)
原子分裂前后动量守恒,则pa+pb=0 (2分)
粒子在磁场中运动时由牛顿定律有 (2分)
∴ (2分)
则: (2分)
(2)a、b粒子相遇时:ta=tb (2分)
由题意分析可知,a粒子在第四次经过y轴与b粒子第一次相遇时,b粒子应第三次经过y轴。则
ta=Ta1+Ta2 tb=Tb1+Tb2/2 (2分)
∵ (2分)
∴
即 (2分)
代入数据并化简得:
解之得:
26如图所示,ABCDE为固定在竖直平面内的轨道,ABC为直轨道,AB光滑,BC粗糙,CDE为光滑圆弧轨道,轨道半径为R,直轨道与圆弧轨道相切于C点,其中圆心O与BE在同一水平面上,OD竖直,∠COD=θ,且θ<5°。现有一质量为m的小物体(可以看作质点)从斜面上的A点静止滑下,小物体与BC间的动摩擦因数为,现要使小物体第一次滑入圆弧轨道即恰好做简谐运动(重力加速度为g)。求:
(1)小物体过D点时对轨道的压力大小 (2)直轨道AB部分的长度S
26 (1)小物体下滑到C点速度为零才能第一次滑入圆弧轨道即恰好做简谐运动
从C到D由机械能守恒定律有: mgR(1-cosθ)= 在D点用向心力公式有: F-mg=m 解以上二个方程可得: F=3mg-2mgcosθ
(2)从A到C由动能定理有:
mgsinθ(S+Rcotθ)- μmgcosθ·Rcotθ=0
解方程得: S=(μcotθ-cotθ)R
27两水平放置的金属板间存在一竖直方向的匀强电场和垂直纸面向里的匀强磁场,磁感应强度为B,一质量为4m ,带电量为-2q的微粒b正好悬浮在板间正中间O点处,另一质量为m,带电量为 +q的微粒a,从p点以水平速度v0(v0未知)进入两板间,正好做匀速直线运动,中途与b碰撞。:
(1)匀强电场的电场强度E为多大 ;微粒a的水平速度为多大
(2)若碰撞后a和b结为一整体,最后以速度0.4v0从Q点穿出场区,求Q点与O点的高度差
(3)若碰撞后a和b分开,分开后b具有大小为0.3v0的水平向右速度,且带电量为-q/2,假如O点的左侧空间足够大,则分开后微粒a的运动轨迹的最高点与O点的高度差为多大
27(1)对b微粒,没与a微粒碰撞前只受重力和电场力,则有2qE = 4mg
∴E =
对a微粒碰前做匀速直线运动,则有
Bqv0 = Eq + mg ∴v0 =
(2)碰撞后,a、b结合为一体,设其速度为v
由动量守恒定律得
mv0 = 5mv ∴v =
碰后的新微粒电量为– q
设Q点与O点高度差为h
由动能定理:
5mgh – Eqh =5m (0.4v0) –5m ()2
∴h = 0.9
(3)碰撞后,a、b分开,则有
mv0 = mva + 4mvb vb = 0.3 v0,得va = – 0.2v0
a微粒电量为 – q / 2,受到的电场力为
E · ∴F电 = mg
故a微粒做匀速圆周运动,设半径为R
B | va | ∴R =
a的最高点与O点的高度差ha = 2R =。
28.有个演示实验,在上下面都是金属板的玻璃盒内,放了许多用锡箔纸揉成的小球,当上下板间加上电压后,小球就上下不停地跳动。现取以下简化模型进行定量研究。
如图所示,电容量为C的平行板电容器的极板A和B水平放置,相距为,与电动势为、内阻可不计的电源相连。设两板之间只有一个质量为的导电小球,小球可视为质点。已知:若小球与极板发生碰撞,则碰撞后小球的速度立即变为零,带电状态也立即改变,改变后,小球所带电荷符号与该极板相同,电量为极板电量的倍()。不计带电小球对极板间匀强电场的影响。重力加速度为。
(1)欲使小球能够不断地在两板间上下往返运动,电动势至少应大于多少
(2)设上述条件已满足,在较长的时间间隔内小球做了很多次往返运动。求在T时间内小球往返运动的次数以及通过电源的总电量
28 (1)
(2)
29.一玩具“火箭”由质量为ml和m2的两部分和压在中间的一根短而硬(即劲度系数很大)的轻质弹簧组成.起初,弹簧被压紧后锁定,具有的弹性势能为E0,通过遥控器可在瞬间对弹簧解除锁定,使弹簧迅速恢复原长。现使该“火箭”位于一个深水池面的上方(可认为贴近水面),释放同时解除锁定。于是,“火箭”的上部分竖直升空,下部分竖直钻入水中。设火箭本身的长度与它所能上升的高度及钻入水中的深度相比,可以忽略,但体积不可忽略。试求.
(1)“火箭”上部分所能达到的最大高度(相对于水面) (2)若上部分到达最高点时,下部分刚好触及水池底部,那么,此过程中,“火箭”下部分克服水的浮力做了多少功?(不计水的粘滞阻力)
29
(1)“火箭”
整体(含弹簧)在弹簧解除锁定的瞬间,弹簧弹力远大于箭体重力,故动量守恒:m1v1-m2v2=0
同时机械能守恒:(m1v12)/2+(m2v22)/2=E0
∴v1=[2m2E0/m1(m1+m2)]
v2=[2m1E0/m2(m1+m2)]
∴“火箭”上部分所能达到的最大高度为:
H1=v12/2g=m2E0/m1g(m1+m2) x
(2)“火箭”上升的时间为:t=v1/g
水池深度为:H2=v2t/2
“火箭”下部分克服水的浮力共做功:
WF=m2gH2+m2v22/2
以上各式联立可得:WF=E0
30如图所示,在某一足够大的真空室中,虚线PH的右侧是一磁感应强度为B,方向垂直纸面向里的匀强磁场,左侧是一场强为E、方向水平向左的匀强电场。在虚线PH上的一点O处有一质量为M、电荷量为Q的镭核(Ra)。某时刻原来静止的镭核水平向右放出一个质量为m、电荷量为q的α粒子而衰变为氡(Rn)核,设α粒子与氡核分离后它们之间的作用力忽略不计,涉及动量问题时,亏损的质量可不计。
经过一段时间α粒子刚好到达虚线PH
上的A点,测得OA=L。求此时刻氡核的
速率
30.设衰变后,氡核的速度为v0,α粒子的速度为vα,由动量守恒定律得
(M-m)v0=mvα
α粒子在匀强磁场中做匀速圆周运动,到达A点需时
又 氡核在电场中做匀加速直线运动,t时速度为v=v0+at
氡核加速度 由以上各式解得:。