• 630.50 KB
  • 2021-05-13 发布

新课标备战高考数学文专题复习83直线平面简单几何体立体几何小结

  • 6页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第83课时:第九章 直线、平面、简单几何体——立体几何小结 课题:立体几何小结 一.课前预习:‎ ‎1.已知两条异面直线所成的角为,直线与,直线与所成的角为,则的范围是 ( )‎ ‎ ‎ ‎2.把正方形ABCD沿对角线AC折起,当A、B C、D四点为顶点的三棱锥体积最大时,直线BD与平面ABC所成的角的大小为( )‎ ‎90° 60° 45° 30°‎ ‎3.长方体的一个顶点上三条棱长分别为,该长方体的顶点都在同一个球面上,则这个球的表面积为 ‎ ‎4.直角三角形的斜边在平面内,与平面分别成的角,若,则在平面内的射影构成的三角形的面积为 5 ‎ 二.例题分析:‎ 例1.已知斜三棱柱中,‎ ‎ ,点是与的交点,‎ ‎(1)基向量表示向量;(2)求异面直线与所成的角;‎ ‎(3)判定平面与平面 解:设 ‎(1) ‎ ‎(2)由题意,可求得,‎ ‎,‎ ‎,,,‎ ‎∴异面直线与所成的角为 ‎(3)取的中点,连结,则 ‎∵,∴,且,∴‎ ‎∴,平面,∴平面与平面 例2.如图在四棱锥中,底面是,且边长为的菱形,侧面为正三角形,其所在平面垂直于底面。‎ ‎(1)若为边的中点,求证:平面;‎ ‎(2)求二面角的大小;‎ ‎(3)若为边的中点,能否在棱上找到一点,使平面平面,并证明你的结论。‎ ‎(1)∵为正三角形,为边的中点,∴,‎ ‎∵平面垂直于底面,∴底面,∴‎ 在菱形中,, ‎ ‎∴,‎ ‎∴为直角三角形,‎ 且,,∴平面 ‎(2)由(1)知底面,,‎ ‎∴,‎ ‎∴是二面角的平面角,‎ ‎∵,∴,∴‎ ‎(3)∵为边的中点,∴,∴,取的中点,连结,‎ 则,∵,∴平面,∴平面平面,∴点存在,且为的中点。‎ 例3.如图,在直四棱柱中,底面是边长为的菱形,侧棱长为 ‎(1)与能否垂直?请证明你的判断;(2)当在上变化时,求异面直线与所成角的取值范围。‎ 解:∵菱形中,于,设,分别以所在直线为轴,建立空间直角坐标系,设,则 ‎(1)∵,‎ ‎∴‎ ‎∴与不能垂直。‎ ‎(2)∵,∴,‎ ‎∵∴,‎ ‎,‎ ‎∵,∴设,又,‎ ‎∴‎ ‎∵,∴‎ ‎∴直线与所成角的取值范围是。‎ 三.课后作业:‎ ‎1.直线,和不同平面满足:和那么必有( )‎ 且且且且 ‎2.在棱长为的正四面体中,分别是的中点,则( )‎ ‎ ‎ ‎3.在空间直角坐标系中,已知,平面,垂足为,直线交平面于点,则点的坐标为( )‎ ‎ ‎ ‎4..给出下列四个命题:①如果直线平面,且,则直线与平面的距离等于平面与平面的距离;②两条平行直线分别在两个平行平面内,则这两条平行直线的距离等于这两个平行平面间的距离;③异面直线分别在两个平行平面内,则的距离等于这两个平面的距离;④若点在平面内,平面//平面,则到平面的距离等于平面与平面的距离。则其中所有正确的命题的序号是 ‎ ‎5.如图,已知直三棱柱ABC-A1B‎1C1,侧棱长为2,底面△ABC中,∠B=90°‎ ‎,AB=1,BC=,D是侧棱CC1上一点,且BD与底面所成角为30°.‎ ‎ (1)求点D到AB所在直线的距离.‎ ‎ (2)求二面角A1-BD-B1的度数.‎ ‎6.已知三棱锥中,与是两个共斜边的等腰直角三角形,为上一点,平面,点分别是的中点, ‎ ‎(1)求的长; ‎ ‎(2)求直线与直线夹角的余弦值;‎ ‎(3)求证: ‎ ‎7.如图,已知正四面体P-ABC中,棱AB、PC的中点分别是M、N.‎ ‎(1)求异面直线BN、PM所成的角;(2)求BN与面ABC所成的角.‎ C B M P N A