- 351.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
高中物理知识归纳(二)
----------------力学模型及方法
1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。解决这类问题的基本方法是整体法和隔离法。
整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程
隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。
B
A
F
m2
m1
F
B
A
F1
F2
2斜面模型 (搞清物体对斜面压力为零的临界条件)
斜面固定:物体在斜面上情况由倾角和摩擦因素决定
=tg物体沿斜面匀速下滑或静止 > tg物体静止于斜面
< tg物体沿斜面加速下滑a=g(sin一cos)
3.轻绳、杆模型
╰
α
绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。
杆对球的作用力由运动情况决定
只有=arctg()时才沿杆方向
最高点时杆对球的作用力;最低点时的速度?,杆的拉力?
若小球带电呢?
E
m,q
L
·O
假设单B下摆,最低点的速度VB= mgR=
整体下摆2mgR=mg+
- 5 -
= ; => VB=
所以AB杆对B做正功,AB杆对A做负功
若 V0< ,运动情况为先平抛,绳拉直沿绳方向的速度消失
即是有能量损失,绳拉紧后沿圆周下落机械能守恒。而不能够整个过程用机械能守恒。
求水平初速及最低点时绳的拉力?
换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v1突然消失),再v2下摆机械能守恒
例:摆球的质量为m,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A时绳子受到的拉力是多少?
4.超重失重模型
系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量ay)
向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)
难点:一个物体的运动导致系统重心的运动
1到2到3过程中 (1、3除外)超重状态
绳剪断后台称示数
系统重心向下加速F
m
a
图9
q
斜面对地面的压力?
地面对斜面摩擦力?
导致系统重心如何运动?
铁木球的运动
用同体积的水去补充
5.碰撞模型:特点,①动量守恒;②碰后的动能不可能比碰前大;
③对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。
◆弹性碰撞:m1v1+m2v2=(1) (2 )
◆一动一静且二球质量相等的弹性正碰:速度交换
大碰小一起向前;质量相等,速度交换;小碰大,向后返。
◆一动一静的完全非弹性碰撞(子弹打击木块模型)
mv0+0=(m+M) =+E损
E损=一=
E损 可用于克服相对运动时的摩擦力做功转化为内能E损=fd相=mg·d相=一
- 5 -
1
2
A
v0
v
s
M
v0
L
v0
A
B
A
B
v0
“碰撞过程”中四个有用推论
弹性碰撞除了遵从动量守恒定律外,还具备:碰前、碰后系统的总动能相等的特征,
设两物体质量分别为m1、m2,碰撞前速度分别为υ1、υ2,碰撞后速度分别为u1、u2,即有 :
m1υ1+m2υ2=m1u1+m1u2
m1υ12+m2υ22=m1u12+m1u22
碰后的速度u1和u2表示为: u1=υ1+υ2
u2=υ1+υ2
推论一:如对弹性碰撞的速度表达式进行分析,还会发现:弹性碰撞前、后,碰撞双方的相对速度大小相等,即}: u2-u1=υ1-υ2
推论二:如对弹性碰撞的速度表达式进一步探讨,当m1=m2时,代入上式得:。即当质量相等的两物体发生弹性正碰时,速度互换。
推论三:完全非弹性碰撞碰撞双方碰后的速度相等的特征,即: u1=u2
由此即可把完全非弹性碰撞后的速度u1和u2表为: u1=u2=
例3:证明:完全非弹性碰撞过程中机械能损失最大。
证明:碰撞过程中机械能损失表为: △E=m1υ12+m2υ22―m1u12―m2u22
由动量守恒的表达式中得: u2=(m1υ1+m2υ2-m1u1)
代入上式可将机械能的损失△E表为u1的函数为:
△E=-u12-u1+[(m1υ12+m2υ22)-( m1υ1+m2υ2)2]
这是一个二次项系数小于零的二次三项式,显然:当 u1=u2=时,
即当碰撞是完全非弹性碰撞时,系统机械能的损失达到最大值
- 5 -
△Em=m1υ12+m2υ22 -
推论四:碰撞过程中除受到动量守恒以及能量不会增加等因素的制约外,还受到运动的合理性要求的制约,比如,某物体向右运动,被后面物体追及而发生碰撞,被碰物体运动速度只会增大而不应该减小并且肯定大于或者等于(不小于)碰撞物体的碰后速度。
6.人船模型:一个原来处于静止状态的系统,在系统内发生相对运动的过程中,
在此方向遵从动量守恒:mv=MV ms=MS s+S=d s= M/m=Lm/LM
载人气球原静止于高h的高空,气球质量为M,人的质量为m.若人沿绳梯滑至地面,则绳梯至少为多长?
20m
S1
S2
M
m
O
R
7.弹簧振子模型:F=-Kx (X、F、a、v、A、T、f、EK、EP等量的变化规律)水平型 竖直型
8.单摆模型:T=2 (类单摆) 利用单摆测重力加速度
9.波动模型:特点:传播的是振动形式和能量,介质中各质点只在平衡位置附近振动并不随波迁移。
①各质点都作受迫振动, ②起振方向与振源的起振方向相同, ③离源近的点先振动,
④没波传播方向上两点的起振时间差=波在这段距离内传播的时间⑤波源振几个周期波就向外传几个波长。波从一种介质传播到另一种介质,频率不改变, 波速v=s/t=/T=f
波速与振动速度的区别 波动与振动的区别:波的传播方向质点的振动方向(同侧法)
知波速和波形画经过Δt后的波形(特殊点画法和去整留零法)
物理解题方法:如整体法、假设法、极限法、逆向思维法、物理模型法、等效法、物理图像法等.
模型法常常有下面三种情况
(1)物理对象模型:用来代替由具体物质组成的、代表研究对象的实体系统,称为对象模型(也可称为概念模型),即把研究的对象的本身理想化.常见的如“力学”中有质点、刚体、杠杆、轻质弹簧、单摆、弹簧振子、弹性体、绝热物质等;
(2)条件模型:把研究对象所处的外部条件理想化,排除外部条件中干扰研究对象运动变化的次要因素,突出外部条件的本质特征或最主要的方面,从而建立的物理模型称为条件模型.
(3)过程模型:把具体过理过程纯粹化、理想化后抽象出来的一种物理过程,称过程模型
其它的碰撞模型:
- 5 -
v0
A
B
C
1
2
A
A
B
C
- 5 -