• 699.00 KB
  • 2021-05-13 发布

全国各地高考文科数学试题分类汇编16选修部分教师版

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2013年全国各地高考文科数学试题分类汇编16:选修部分 一、选择题 .(2013年高考大纲卷(文))不等式 (  )‎ A. B. C. D.‎ ‎【答案】D ‎ 二、填空题 .(2013年高考陕西卷(文))(几何证明选做题) 如图, AB与CD相交于点E, 过E作BC的平行线与AD的延长线相交于点P. 已知, PD = 2DA = 2, 则PE = ______. ‎ ‎【答案】 ‎ .(2013年高考广东卷(文))(坐标系与参数方程选做题)‎ 已知曲线的极坐标方程为.以极点为原点,极轴为轴的正半轴建立直角坐标系,则曲线的参数方程为____________.‎ ‎【答案】(为参数) ‎ .(2013年高考陕西卷(文))A. (不等式选做题) 设a, b∈R, |a-b|>2, 则关于实数x的不等式的解集是______. ‎ ‎【答案】A:R ‎ .(2013年高考天津卷(文))如图, 在圆内接梯形ABCD中, AB//DC, 过点A作圆的切线与CB的延长线交于点E. 若AB = AD = 5, BE = 4, 则弦BD的长为______. ‎ ‎【答案】 ‎ .(2013年高考湖南(文))在平面直角坐标系xOy中,若直线(s为参数)和直线 ‎(t为参数)平行,则常数a的值为_____‎ ‎【答案】4 ‎ .(2013年高考陕西卷(文))(坐标系与参数方程选做题) 圆锥曲线 (t为参数)的焦点坐标是____________ .‎ ‎【答案】(1, 0) ‎ .(2013年高考广东卷(文))(几何证明选讲选做题)‎ 如图3,在矩形中,,,垂足为,则_______.‎ ‎【答案】 ‎ .(2013年上海高考数学试题(文科))若,,则________.‎ ‎【答案】1 ‎ 三、解答题 .(2013年高考辽宁卷(文))选修4-1:几何证明选讲 如图,垂直于于,垂直于,连接.证明:‎ ‎(I) (II)‎ ‎【答案】‎ ‎ ‎ .(2013年高考课标Ⅱ卷(文))选修4—1几何证明选讲:如图,为△外接圆的切线,的延长线交直线于点,分别为弦与弦上的点,且,四点共圆.‎ ‎(Ⅰ)证明:是△外接圆的直径;‎ ‎(Ⅱ)若,求过四点的圆的面积与△外接圆面积的比值.‎ ‎【答案】‎ ‎ ‎ .(2013年高考课标Ⅰ卷(文))选修4—4:坐标系与参数方程 ‎ 已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.‎ ‎(Ⅰ)把的参数方程化为极坐标方程;‎ ‎(Ⅱ)求与交点的极坐标().‎ ‎【答案】解:(1)将,消去参数t,化学普通方程, ‎ 即 , ‎ 将 ‎ ‎; ‎ 所以极坐标方程为 ‎ ‎. ‎ ‎(2)的普通方程为, ‎ ‎ ‎ 所以交点的极坐标为. ‎ .(2013年高考课标Ⅱ卷(文))选修4—4;坐标系与参数方程 已知动点都在曲线为参数上,对应参数分别为与,为的中点.‎ ‎(Ⅰ)求的轨迹的参数方程;‎ ‎(Ⅱ)将到坐标原点的距离表示为的函数,并判断的轨迹是否过坐标原点.‎ ‎【答案】‎ ‎ ‎ .(2013年高考课标Ⅰ卷(文))选修4—1:几何证明选讲 ‎ 如图,直线为圆的切线,切点为,点在圆上,的角平分线交圆于点,垂直交圆于点.‎ ‎(Ⅰ)证明:;‎ ‎(Ⅱ)设圆的半径为,,延长交于点,求外接圆的半径.‎ ‎【答案】解:(1)连接DE,交BC为G,由弦切角定理得,,而.又因为,所以DE为直径,DCE=90°,由勾股定理可得DB=DC. ‎ ‎ ‎ ‎(II)由(1),,,故是的中垂线,所以,圆心为O,连接BO,则,,所以,故外接圆半径为. ‎ .(2013年高考课标Ⅰ卷(文))选修4—5:不等式选讲 已知函数,.‎ ‎(Ⅰ)当时,求不等式的解集;‎ ‎(Ⅱ)设,且当时,,求的取值范围 ‎【答案】解:(I)当