- 955.00 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2009年普通高等学校招生全国统一考试(广东卷)
数学(文科)
本试卷共4页,21小题,满分150分。考试用时120分钟。
一、选择题:本大题共10 小题,每小题5分,满分50分.每小题给出得四个选项中,只有一项十符合题目要求得.
1.已知全集U=R,则正确表示集合M= {-1,0,1} 和N= { x |x+x=0} 关系的韦恩(Venn)图是
2.下列n的取值中,使=1(i是虚数单位)的是
A.n=2 B .n=3 C .n=4 D .n=5
3.已知平面向量a= ,b=, 则向量
A平行于轴 B.平行于第一、三象限的角平分线
C.平行于轴 D.平行于第二、四象限的角平分线
4.若函数是函数的反函数,且,则
A. B. C. D.2
5.已知等比数列的公比为正数,且·=2,=1,则=
A. B. C. D.2
6.给定下列四个命题:
①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;
②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
③垂直于同一直线的两条直线相互平行;w.w.w.k.s.5.u.c.o.m
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.
其中,为真命题的是
A.①和② B.②和③ C.③和④ D.②和④
7.已知中,的对边分别为a,b,c若a=c=且,则b=
A.2 B.4+ C.4— D.
8.函数的单调递增区间是
A. B.(0,3) C.(1,4) D.
9.函数是
A.最小正周期为的奇函数 B. 最小正周期为的偶函数
C. 最小正周期为的奇函数 D. 最小正周期为的偶函数
10.广州2010年亚运会火炬传递在A、B、C、D、E五个城市之间进行,各城市之间的路线距离(单位:百公里)见右表.若以A为起点,E为终点,每个城市经过且只经过一次,那么火炬传递的最短路线距离是
A. B.21 C.22 D.23
二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。
(一)必做题(11-13题)
11.某篮球队6名主力队员最近三场比赛中投进的三分球个数如表所示
图1是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填 ,输出的s=
(注:框图中的赋值符号“=”也可以写成“←”或“:=”)
w.w.w12.某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是
。若用分层抽样方法,则40岁以下年龄段应抽取 人.
13.以点(2,)为圆心且与直线相切的圆的方程是 .
(二)选做题(14、15题,考生只能从中选做一题)
14.(坐标系与参数方程选做题)若直线(t为参数)与直线垂直,则常数= .
15.(几何证明选讲选做题)如图3,点A、B、C是圆O上的点,且AB=4,,则圆O的面积等于 . w.w.w.k.s.5.u.c.o.m
三、解答题,本大题共6小题,满分80分。解答须写出文字说明、证明过程和演算步骤。
16.(本小题满分12分)
已知向量与互相垂直,其中
(1)求和的值
(2)若,,求的值
17.(本小题满分13分)
某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图5、图6分别是该标识墩的正(主)视图和俯视图.
(1)请画出该安全标识墩的侧(左)视图;
(2)求该安全标识墩的体积
(3)证明:直线BD平面PEG
18.(本小题满分13分)
随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.
(1)根据茎叶图判断哪个班的平均身高较高;
(2)计算甲班的样本方差
(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.
19.(本小题满分14分)
已知椭圆G的中心在坐标原点,长轴在轴上,离心率为,两个焦点分别为和,椭圆G上一点到和的距离之和为12.圆:的圆心为点.
(1)求椭圆G的方程
(2)求的面积
(3)问是否存在圆包围椭圆G?请说明理由.
20.(本小题满分14分)
已知点(1,)是函数且)的图象上一点,等比数列的前n项和为,数列的首项为c,且前n项和满足-=+(n2).
(1)求数列和的通项公式;
(2)若数列{前n项和为,问>的最小正整数n是多少?
21.(本小题满分14分)
已知二次函数的导函数的图像与直线平行,且在=-1处取得最小值m-1(m).设函数
(1)若曲线上的点P到点Q(0,2)的距离的最小值为,求m的值
(2) 如何取值时,函数存在零点,并求出零点.
参考答案
一、选择题:本大题共10 小题,每小题5分,满分50分.
1.【答案】B
【解析】由N= { x |x+x=0}得,选B.
2.【答案】C
【解析】因为,故选C.
3. 【答案】C
【解析】,由及向量的性质可知,C正确.
4.【答案】A
【解析】函数的反函数是,又,即,
所以,,故,选A.
5.【答案】B
【解析】设公比为,由已知得,即,因为等比数列的公比为正数,所以,故,选B
6.【答案】D
【解析】①错, ②正确, ③错, ④正确.故选D
7.【答案】A
【解析】
由a=c=可知,,所以,
由正弦定理得,故选A
8.【答案】D
【解析】,令,解得,故选D
9.【答案】A
【解析】因为为奇函数,,所以选A.
10.【答案】B
【解析】由题意知,所有可能路线有6种:
①,②,③,④,⑤,⑥,
其中, 路线③的距离最短, 最短路线距离等于,
故选B.
二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。
(一)必做题(11-13题)
11.【答案】,
【解析】顺为是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,所图中判断框应填,输出的s=.
12.【答案】37, 20
【解析】由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.
40岁以下年龄段的职工数为,则应抽取的人数为人.
13.【答案】
【解析】将直线化为,圆的半径,所以圆的方程为 w.w.w.k.s.5.u.c.o.m
(二)选做题(14、15题,考生只能从中选做一题)
14.【答案】
【解析】将化为普通方程为,斜率,
当时,直线的斜率,由得;
当时,直线与直线不垂直.
综上可知,.
15.【答案】
【解析】连结AO,OB,因为 ,所以,为等边三角形,故圆O的半径,圆O的面积.
三、解答题,本大题共6小题,满分80分。
16.【解析】(1),,即
又∵, ∴,即,∴
又 ,
(2) ∵
, ,即
又 , ∴ w.w.w.k.s.5.u.c.o.m
17.【解析】(1)侧视图同正视图,如右图所示.
(2)该安全标识墩的体积为:
(3)如图,连结EG,HF及 BD,EG与HF相交于O,连结PO.
由正四棱锥的性质可知,平面EFGH ,
又 平面PEG
又 平面PEG;w.w.w.k.s.5.u.c.o.m
18.【解析】(1)由茎叶图可知:甲班身高集中于之间,而乙班身高集中于 之间。因此乙班平均身高高于甲班;
(2)
甲班的样本方差为
=57
(3)设身高为176cm的同学被抽中的事件为A;
从乙班10名同学中抽中两名身高不低于173cm的同学有:(181,173) (181,176)
(181,178) (181,179) (179,173) (179,176) (179,178) (178,173)
(178, 176) (176,173)共10个基本事件,而事件A含有4个基本事件;
;
19.【解析】(1)设椭圆G的方程为: ()半焦距为c;
则 , 解得 ,
所求椭圆G的方程为:. w.w.w.k.s.5.u.c.o.m
(2 )点的坐标为
(3)若,由可知点(6,0)在圆外,
若,由可知点(-6,0)在圆外;
不论K为何值圆都不能包围椭圆G.
20.(本小题满分14分)
【解析】(1), w.w.w.k.s.5.u.c.o.m
,,
.
又数列成等比数列, ,所以 ;
又公比,所以 ;
又,, ;
数列构成一个首相为1公差为1的等差数列, ,
当, ;
();
(2)
;w.w.w.k.s.5.u.c.o.m
由得,满足的最小正整数为112.
21.(本小题满分14分)
【解析】(1)设,则;
又的图像与直线平行
又在取极小值, ,
, ;
, 设
则
;w.w.w.k.s.5.u.c.o.m
(2)由,
得
当时,方程有一解,函数有一零点;
当时,方程有二解,若,,
函数有两个零点;若,
,函数有两个零点;
当时,方程有一解, , 函数有一零点 w.w.w.k.s.5.u.c.o.m