• 522.00 KB
  • 2021-05-13 发布

高考立体几何文科汇编(学生版)

  • 8页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2011年高考立体几何文科汇编 ‎(江苏16)如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点 求证:(1)直线EF‖平面PCD;‎ ‎(2)平面BEF⊥平面PAD ‎(安徽卷19)如图,为多面体,平面与平面垂直,点在线段上,,,△OAB,△OAC,△ODE,△ODF都是正三角形。‎ ‎(Ⅰ)证明直线;‎ ‎(Ⅱ)求棱锥的体积.‎ ‎(北京卷17).如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.‎ ‎(Ⅰ)求证:DE∥平面BCP; ‎ ‎(Ⅱ)求证:四边形DEFG为矩形;‎ ‎(Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.‎ ‎(福建卷20).如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。‎ ‎ (I)求证:CE⊥平面PAD;‎ ‎(11)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积 ‎(广东18).图5所示的集合体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的.A,A′,B,B′分别为,,,的中点,分别为的中点.‎ (1) 证明:四点共面;‎ ‎(2)设G为A A′中点,延长到H′,使得.证明:‎ ‎(湖北18).如图,已知正三棱柱-的底面边长为2,侧棱长为,点E在侧棱上,点F在侧棱上,且,.‎ ‎(I) 求证:;‎ ‎(II) 求二面角的大小.‎ ‎(湖南卷19)如图3,在圆锥中,已知的直径的中点.‎ ‎(I)证明:‎ ‎(II)求直线和平面所成角的正弦值.‎ ‎(江西卷18)如图,在交AC于 点D,现将 ‎(1)当棱锥的体积最大时,求PA的长;‎ ‎(2)若点P为AB的中点,E为 ‎(辽宁卷18)如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.‎ ‎(I)证明:PQ⊥平面DCQ;‎ ‎(II)求棱锥Q—ABCD的的体积与棱锥P—DCQ的体积的比值.‎ ‎(全国卷20)如图,四棱锥中, ,,侧面为等边三角形, ‎ ‎.‎ ‎ (I)证明:平面SAB;‎ ‎ (II)求AB与平面SBC所成的角的大小。‎ ‎(山东卷19).如图,在四棱台中,平面,底面是平行四边形,,,60°‎ ‎(Ⅰ)证明:;‎ ‎(Ⅱ)证明:.‎ ‎(陕西卷16).如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°。‎ ‎(Ⅰ)证明:平面ADB  ⊥平面BDC;‎ ‎(Ⅱ)设BD=1,求三棱锥D—ABC的表面积.‎ ‎(上海卷20)已知是底面边长为1的正四棱柱,高。求:‎ ‎⑴ 异面直线与所成的角的大小(结果用反三角函数表示);‎ ‎⑵ 四面体的体积。‎ ‎(四川卷19)如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延长A1C1至点P,使C1P=A1C1,连接AP交棱CC1于D.‎ ‎(Ⅰ)求证:PB1∥平面BDA1;‎ ‎(Ⅱ)求二面角A-A1D-B的平面角的余弦值;‎ ‎(天津卷17)如图,在四棱锥中,底面为平行四边形,,,为中点,平面, ,为中点.‎ ‎(Ⅰ)证明://平面;‎ ‎(Ⅱ)证明:平面;‎ ‎(Ⅲ)求直线与平面所成角的正切值.‎ ‎(新课标18)如图,四棱锥中,底面ABCD为平行四边形,,,底面ABCD.‎ ‎(I)证明:;‎ ‎(II)设PD=AD=1,求棱锥D-PBC的高.‎ ‎(浙江卷20)如图,在三棱锥中,,为的中点,⊥平面,垂足落在线段上.‎ ‎(Ⅰ)证明:⊥;‎ ‎(Ⅱ)已知,,,.求二面角的大小.‎ ‎(重庆卷20)如题(20)图,在四面体中,平面ABC⊥平面,‎ ‎ (Ⅰ)求四面体ABCD的体积;‎ ‎ (Ⅱ)求二面角C-AB-D的平面角的正切值。‎