- 5.26 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2013年全国各地高考文科数学试题分类汇编:导数
一、选择题
.(2013年高考课标Ⅱ卷(文))已知函数,下列结论中错误的是 ( )
A.R, B.函数的图像是中心对称图形
C.若是的极小值点,则在区间上单调递减
D.若是的极值点,则
【答案】C
.(2013年高考大纲卷(文))已知曲线( )
A. B. C. D.
【答案】D
.(2013年高考湖北卷(文))已知函数有两个极值点,则实数的取值范围是 ( )
A. B. C. D.
【答案】B
.(2013年高考福建卷(文))设函数的定义域为,是的极大值点,以下结论一定正确的是( )
A. B.是的极小值点
C.是的极小值点 D.是的极小值点
【答案】D
.(2013年高考安徽(文))已知函数有两个极值点,若,则关于的方程
的不同实根个数为( )
A.3 B.4 C.5 D.6
【答案】A
.(2013年高考浙江卷(文))已知函数y=f(x)的图像是下列四个图像之一,且其导函数y=f’(x)的图像如右图所示,则该函数的图像是
D
C
B
A
【答案】B
二、填空题
.(2013年高考广东卷(文))若曲线在点处的切线平行于轴,则____________.
【答案】
.(2013年高考江西卷(文))若曲线(α∈R)在点(1,2)处的切线经过坐标原点,则α=_________.
【答案】2
三、解答题
.(2013年高考浙江卷(文))已知a∈R,函数f(x)=2x3-3(a+1)x2+6ax
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.
【答案】解:(Ⅰ)当时,,所以,所以在处的切线方程是:;
(Ⅱ)因为
①当时,时,递增,时,递减,所以当
时,且,时,递增,时,递减,所以最小值是;
②当时,且,在时,时,递减,时,递增,所以最小值是;
综上所述:当时,函数最小值是;当时,函数最小值是;
.(2013年高考重庆卷(文))(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)
某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为米,高为米,体积为
立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000元(为圆周率).
(Ⅰ)将表示成的函数,并求该函数的定义域;zhangwlx
(Ⅱ)讨论函数的单调性,并确定和为何值时该蓄水池的体积最大.zhangwlx
【答案】
.(2013年高考陕西卷(文))已知函数.
(Ⅰ) 求f(x)的反函数的图象上图象上点(1,0)处的切线方程;
(Ⅱ) 证明: 曲线y = f (x) 与曲线有唯一公共点.
(Ⅲ) 设a, ,
所以存在,,使得.
由于函数在区间和上均单调,所以当时曲线与直线有且只有两个不同交点.
综上可知,如果曲线与直线有且只有两个不同交点,那么的取值范围是.
.(2013年高考课标Ⅰ卷(文))(本小题满分共12分)
已知函数,曲线在点处切线方程为.
(Ⅰ)求的值;
(Ⅱ)讨论的单调性,并求的极大值.
【答案】
(II) 由(I)知,
令
从而当<0.
故.
当.
.(2013年高考天津卷(文))设, 已知函数
(Ⅰ) 证明在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增;
(Ⅱ) 设曲线在点处的切线相互平行, 且 证明.
【答案】
.(2013年高考福建卷(文))已知函数(,为自然对数的底数).
(1)若曲线在点处的切线平行于轴,求的值;
(2)求函数的极值;
(3)当的值时,若直线与曲线没有公共点,求的最大值.
【答案】解:(Ⅰ)由,得.
又曲线在点处的切线平行于轴,
得,即,解得.
(Ⅱ),
①当时,,为上的增函数,所以函数无极值.
②当时,令,得,.
,;,.
所以在上单调递减,在上单调递增,
故在处取得极小值,且极小值为,无极大值.
综上,当时,函数无极小值;
当,在处取得极小值,无极大值.
(Ⅲ)当时,
令,
则直线:与曲线没有公共点,
等价于方程在上没有实数解.
假设,此时,,
又函数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没有实数解”矛盾,故.
又时,,知方程在上没有实数解.
所以的最大值为.
解法二:
(Ⅰ)(Ⅱ)同解法一.
(Ⅲ)当时,.
直线:与曲线没有公共点,
等价于关于的方程在上没有实数解,即关于的方程:
(*)
在上没有实数解.
①当时,方程(*)可化为,在上没有实数解.
②当时,方程(*)化为.
令,则有.
令,得,
当变化时,的变化情况如下表:
当时,,同时当趋于时,趋于,
从而的取值范围为.
所以当时,方程(*)无实数解,
解得的取值范围是.
综上,得的最大值为.
.(2013年高考湖南(文))已知函数f(x)=.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.
【答案】解: (Ⅰ)
.
所以,.
(Ⅱ)由(Ⅰ)知,只需要证明:当x>0时f(x) < f(-x)即可.
.
.
.(2013年高考广东卷(文))设函数 .
(1) 当时,求函数的单调区间;
(2) 当时,求函数在上的最小值和最大值,
【答案】(1)当时
,在上单调递增.
(2)当时,,其开口向上,对称轴 ,且过
-k
k
k
(i)当,即时,,在上单调递增,
从而当时, 取得最小值 ,
当时, 取得最大值.
(ii)当,即时,令
解得:,注意到,
(注:可用韦达定理判断,,从而;或者由对称结合图像判断)
的最小值,
的最大值
综上所述,当时,的最小值,最大值
解法2(2)当时,对,
都有,故
故,而 ,
所以 ,
(1) 解法3:因为,;
① 当时,即时,,在上单调递增,此时无最小值和最大值;
② 当时,即时,令,解得或;令,解得或;令,解得;
③ 因为,
作的最值表如下:
极大值
极小值
则,;
因为
;
,所以;
因为
;
;
所以;
综上所述,所以,.
.(2013年高考山东卷(文))已知函数
(Ⅰ)设,求的单调区间
(Ⅱ) 设,且对于任意,.试比较与的大小
【答案】
当时函数的单调递减区间是
.(2013年高考湖北卷(文))设,,已知函数.
(Ⅰ)当时,讨论函数的单调性;
(Ⅱ)当时,称为、关于的加权平均数.
(i)判断, ,是否成等比数列,并证明;
(ii)、的几何平均数记为G. 称为、的调和平均数,记为H. 若,求的取值范围.
【答案】(Ⅰ)的定义域为,
.
当时,,函数在,上单调递增;
当时,,函数在,上单调递减.
(Ⅱ)(i)计算得,,.
故, 即
. ①
所以成等比数列.
因,即. 由①得.
(ii)由(i)知,.故由,得
. ②
当时,.
这时,的取值范围为;
当时,,从而,由在上单调递增与②式,
得,即的取值范围为;
当时,,从而,由在上单调递减与②式,
得,即的取值范围为.