- 450.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
高考数学立体几何试题汇编
解答题
27.(全国Ⅰ•理•19题)四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD。已知∠ABC=45°,AB=2,BC=2,SA=SB=。
(Ⅰ)证明:SA⊥BC;
(Ⅱ)求直线SD与平面SAB所成角的大小;
28.(全国Ⅱ•理•19题)如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点。
A
B
C
D
P
E
F
第38题图
第39题图
(Ⅰ)求证:EF∥平面SAD;(Ⅱ)设SD = 2CD,求二面角A-EF-D的大小;
29.(北京•理•16题)如图,在中,,斜边.可以通过以直线为轴旋转得到,且二面角是直二面角.动点的斜边上.
(I)求证:平面平面;
(II)当为的中点时,求异面直线与所成角的大小;
(III)求与平面所成角的最大值.
31.(福建•理•18题)如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点。
(Ⅰ)求证:AB1⊥面A1BD;
(Ⅱ)求二面角A-A1D-B的大小;
(Ⅲ)求点C到平面A1BD的距离;A
B
C
D
O
F
A
E
B
G
D
F
C
A
E
B
C
F
D
G1
G2
图1
图2
34.(湖南•理•18题)如图1,分别是矩形的边的中点,是上的一点,将,分别沿翻折成,,并连结,使得平面平面,,且.连结,如图2.
(I)证明:平面平面;
(II)当,,时,求直线和平面所成的角;
36.(江西•理•20题)右图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=l,∠AlBlC1=90°,AAl=4,BBl=2,CCl=3。
(I)设点O是AB的中点,证明:OC∥平面A1B1C1;
(II)求二面角B—AC—A1的大小;
(Ⅲ)求此几何体的体积;
38.(宁夏•理•19题)如图,在三棱锥中,侧面与侧面均为等边三角形,,为中点.
(Ⅰ)证明:平面;(Ⅱ)求二面角的余弦值.
39.(陕西•理•19题)如图,在底面为直角梯形的四棱锥中,,,BC=6。
(Ⅰ)求证:;(Ⅱ)求二面角的大小;
41.(四川•理•19题)如图,四边形是直角梯形,∠=90°,∥,=1,=2,又=1,∠=120°,⊥,直线与直线所成的角为60°.
(Ⅰ)求证:平面⊥平面;
(Ⅱ)求二面角的大小;
(Ⅲ)求三棱锥的体积;
42.(天津•理•19题)如图,在四棱锥中,底面,,,是的中点.
(Ⅰ)证明;
(Ⅱ)证明平面;
(Ⅲ)求二面角的大小;
43.(浙江•理•19题)在如图所示的几何体中,平面ABC,平面ABC,,,M是AB的中点。
(Ⅰ)求证:;
(Ⅱ)求CM与平面CDE所成的角;