• 889.50 KB
  • 2021-05-13 发布

高考数学分类汇编统计与概率

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
www.gkstk.com ‎2016年高考数学试题分类汇编 统计与概率 一、选择题 ‎1、(2016年北京高考)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为 ‎(A) (B) (C) (D) ‎ ‎【答案】B ‎2、(2016年北京高考)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.‎ 学生序号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ 立定跳远(单位:米)‎ ‎1.96‎ ‎1.92‎ ‎1.82]‎ ‎1.80‎ ‎1.78‎ ‎1.76‎ ‎1.74‎ ‎1.72‎ ‎1.68‎ ‎1.60‎ ‎30秒跳绳(单位:次)‎ ‎63‎ a ‎75‎ ‎60‎ ‎63‎ ‎72‎ ‎70‎ a−1‎ b ‎65‎ 在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则 ‎(A)2号学生进入30秒跳绳决赛 (B)5号学生进入30秒跳绳决赛 ‎ ‎(C)8号学生进入30秒跳绳决赛 (D)9号学生进入30秒跳绳决赛 ‎【答案】B ‎3、(2016年山东高考)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是 ‎(A)56 (B)60 (C)120 (D)140‎ ‎【答案】D ‎4、(2016年天津高考)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为 ‎(A) (B) (C) (D)‎ ‎【答案】A ‎5、(2016年全国I卷高考)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是 ‎(A)(B)(C)(D)‎ ‎【答案】C ‎6、(2016年全国II卷高考)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )‎ ‎(A) (B) (C) (D)‎ ‎【答案】B ‎7、(2016年全国III卷高考)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C。下面叙述不正确的是 ‎(A) 各月的平均最低气温都在00C以上 (B) 七月的平均温差比一月的平均温差大 ‎(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C的月份有5个 ‎【答案】D[‎ ‎8、(2016年全国III卷高考)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是中的一个字母,第二位是1,2,3,4,5‎ 中的一个数字,则小敏输入一次密码能够成功开机的概率是 ‎(A) (B) (C) (D) ‎ ‎【答案】C 二、填空题 ‎1、(2016年北京高考)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店 ‎①第一天售出但第二天未售出的商品有______种;‎ ‎②这三天售出的商品最少有_______种.‎ ‎【答案】①16;②29 ‎ ‎2、(2016年江苏省高考)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________▲_____. ‎ ‎【答案】0.1‎ ‎3、(2016年江苏省高考)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 ▲ .‎ ‎【答案】‎ ‎4、(2016年上海高考)某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米)‎ ‎【答案】1.76‎ 三、解答题 ‎1、(2016年北京高考)某市民用水拟实行阶梯水价,每人用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:‎ ‎(I)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?‎ ‎(II)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.‎ 解:(I)由用水量的频率分布直方图知,‎ 该市居民该月用水量在区间,,,,内的频 率依次为,,,,.‎ 所以该月用水量不超过立方米的居民占%,用水量不超过立方米的居民占%.‎ 依题意,至少定为.‎ ‎(II)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表:‎ 组号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ 分组 频率 根据题意,该市居民该月的人均水费估计为:‎ ‎(元).‎ ‎2、(2016年山东高考)某儿童乐园在“六一”儿童节退出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:‎ ‎①若,则奖励玩具一个;‎ ‎②若,则奖励水杯一个;‎ ‎③其余情况奖励饮料一瓶.‎ 假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.‎ ‎(I)求小亮获得玩具的概率;‎ ‎(II)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.‎ 解析:用数对表示儿童参加活动先后记录的数,则基本事件空间与点集一一对应.因为中元素个数是所以基本事件总数为 ‎()记“”为事件.‎ 则事件包含的基本事件共有个,即 ‎ 所以,即小亮获得玩具的概率为.‎ ‎()记“”为事件,“”为事件.‎ 则事件包含的基本事件共有个,即 所以,‎ 则事件包含的基本事件共有个,即 所以,‎ 因为 所以,小亮获得水杯的概率大于获得饮料的概率.‎ ‎4、(2016年上海高考)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5), [0.5,1),……[4,4.5]分成9组,制成了如图所示的频率分布直方图。‎ ‎(I)求直方图中的a值;‎ ‎(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;‎ ‎(Ⅲ)估计居民月均用水量的中位数。‎ ‎【解析】(Ⅰ)由频率分布直方图,可知:月用水量在[0,0.5]的频率为0.08×0.5=0.04.‎ 同理,在[0.5,1),(1.5,2],[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.‎ 由1–(0.04+0.08+0.21+.025+0.06+0.04+0.02)=0.5×a+0.5×a,‎ 解得a=0.30.‎ ‎(Ⅱ)由(Ⅰ),100位居民月均水量不低于3吨的频率为0.06+0.04+0.02=0.12.‎ 由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300000×0.13=36000.‎ ‎(Ⅲ)设中位数为x吨.‎ 因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,‎ 而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5‎ 所以2≤x<2.5.‎ 由0.50×(x–2)=0.5–0.48,解得x=2.04.‎ 故可估计居民月均用水量的中位数为2.04吨.‎ ‎5、(2016年全国I卷高考)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:‎ 记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损零件数.‎ ‎(I)若=19,求y与x的函数解析式;‎ ‎(II)若要求“需更换的易损零件数不大于”的频率不小于0.5,求的最小值;‎ ‎(III)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?‎ ‎(Ⅱ)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故的最小值为19.‎ ‎(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为.‎ 若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4000,10台的费用为4500,因此这100台机器在购买易损零件上所需费用的平均数为.‎ 比较两个平均数可知,购买1台机器的同时应购买19个易损零件.‎ ‎6、(2016年全国II卷高考)某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其 上年度出险次数的关联如下:‎ 上年度出险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ 保费 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:‎ 出险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ 频数 ‎60‎ ‎50‎ ‎30‎ ‎30‎ ‎20‎ ‎10‎ ‎(Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求的估计值;‎ ‎(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.‎ 求的估计值;‎ ‎(III)求续保人本年度的平均保费估计值.‎ 解析:(Ⅰ)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内险次数小于2的频率为,‎ 故P(A)的估计值为0.55.‎ ‎(Ⅱ)事件B发生当且仅当一年内出险次数大于1且小于4.由是给数据知,一年内出险次数大于1且小于4的频率为,‎ 故P(B)的估计值为0.3.‎ ‎(Ⅲ)由题所求分布列为:‎ 保费 ‎0.85a a ‎1.25a ‎1.5a ‎1.75a ‎2a 频率 ‎0.30‎ ‎0.25‎ ‎0.15‎ ‎0.15‎ ‎0.10‎ ‎0.05‎ 调查200名续保人的平均保费为 ‎,‎ 因此,续保人本年度平均保费估计值为1.1925a.‎ ‎9、(2016年全国III卷高考)‎ 下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图 ‎(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;‎ ‎(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.‎ 附注:‎ 参考数据:,,,≈2.646.‎ 参考公式:相关系数 ‎ 回归方程 中斜率和截距的最小二乘估计公式分别为:‎ ‎(Ⅱ)由及(Ⅰ)得,‎ 所以,关于的回归方程为:. ..........10分 将2016年对应的代入回归方程得:.‎ 所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨. .........12分