- 373.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
高考数学专题复习 解析几何 精选例题
第一课时
高考解答题中解析几何是在第二问中加大区分度的,因此第一问的训练对于普通学校来说还是非常重要的,而第一问常考查动点的轨迹,求直线方程 ,圆锥曲线方程中的基本量,近年来,又加入了向量,但只是考察向量知识为主,以向量方法去做题在第一问中考查的还不多。
例一.(2004. 辽宁卷)(本小题满分12分)
设椭圆方程为,过点M(0,1)的直线l交椭圆于点A、B,O是坐标原点,
点P满足,点N的坐标为,当l绕点M旋转时,求:
(1)动点P的轨迹方程;
解答:.本小题主要考查平面向量的概念、直线方程的求法、椭圆的方程和性质等基础知识,以及轨迹的求法与应用、曲线与方程的关系等解析几何的基本思想和综合解题能力. 满分12分.
(1)解法一:直线l过点M(0,1)设其斜率为k,则l的方程为
记、由题设可得点A、B的坐标、是方程组
②
①
的解.…………………………2分
将①代入②并化简得,,所以
于是
…………6分
设点P的坐标为则
消去参数k得 ③
当k不存在时,A、B中点为坐标原点(0,0),也满足方程③,所以点P的轨迹方
程为………………8分
解法二:设点P的坐标为,因、在椭圆上,所以
④ ⑤
④—⑤得,所以
当时,有 ⑥
并且 ⑦ 将⑦代入⑥并整理得 ⑧
当时,点A、B的坐标为(0,2)、(0,-2),这时点P的坐标为(0,0)
也满足⑧,所以点P的轨迹方程为
………………8分
例二(2004.湖南理)(本小题满分12分)
如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A,B两点,点Q是点P关于原点的对称点.
(I)设点P分有向线段所成的比为,证明:;
解:(Ⅰ)依题意,可设直线AB的方程为 代入抛物线方程得
①
设A、B两点的坐标分别是 、、x2是方程①的两根.
所以
由点P(0,m)分有向线段所成的比为,
得
又点Q是点P关于原点的对称点,
故点Q的坐标是(0,-m),从而.
所以
例三.(2004. 天津卷)(本小题满分14分) 椭圆的中心是原点O,它的短轴长为,相应于焦点的准线与轴相交于点A,,过点A的直线与椭圆相交于P、Q两点。(I) 求椭圆的方程及离心率;
本小题主要考查椭圆的标准方程和几何性质,直线方程,平面向量的计算:
(I)解:由题意,可设椭圆的方程为 由已知得解得 所以椭圆的方程为,离心率
(课后训练)
1.(2004.江苏)已知椭圆的中心在原点,离心率为,一个焦点是F(-m,0)(m是大于0的常数). (Ⅰ)求椭圆的方程;:答案:(1)
2.(2004. 福建理)(本小题满分12分)
如图,P是抛物线C:y=x2上一点,直线l过点P且与抛物线C交
于另一点Q.
(Ⅰ)若直线l与过点P的切线垂直,求线段PQ中点M的轨迹方程;
答案:. 本题主要考查直线、抛物线、不等式等基础知识,求轨迹方程的方法
解:(Ⅰ)设P(x1,y1),Q(x2,y2),M(x0,y0),依题意x1≠0,y1>0,y2>0.
由y=x2, ①得y'=x.∴过点P的切线的斜率k切= x1,
∴直线l的斜率kl=-=-,∴直线l的方程为y-x12=- (x-x1),
方法一:联立①②消去y,得x2+x-x12-2=0.∵M是PQ的中点
x0==-,
∴
y0=x12-(x0-x1).消去x1,得y0=x02++1(x0≠0),∴PQ中点M的轨迹方程为y=x2++1(x≠0).
方法二:由y1=x12,y2=x22,x0=,得y1-y2=x12-x22=(x1+x2)(x1-x2)=x0(x1-x2),
则x0==kl=-,∴x1=-,将上式代入②并整理,得y0=x02++1(x0≠0),
∴PQ中点M的轨迹方程为y=x2++1(x≠0).
3.(2004.湖北理)(本小题满分12分)直线的右支交于不同的两点A、B.(I)求实数k的取值范围;
答案:.本小题主要考查直线、双曲线的方程和性质,曲线与方程的关系,及其综合应用能力,满分12分.
解:(Ⅰ)将直线
……①依题意,直线l与双曲线C的右支交于不同两点,故
5. (04.
上海春季高考)(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知倾斜角为的直线过点和点,在第一象限,.(1) 求点的坐标;若直线与双曲线相交于、两点,且线段的中点坐标为,求的值;
答案: (1) 直线方程为,设点,由及,得,,点的坐标为。
(2)由得,设,则,得。
第二课时
例一椭圆C的中心在原点,焦点F1、F2在x轴上,点P为椭圆上的一个动点,且∠F1PF2的最大值为90°,直线l过左焦点F1与椭圆交于A、B两点,△ABF2的面积最大值为12.
(1) 求椭圆C的离心率;
答案:设, 对 由余弦定理, 得
,解出
例二知直线与椭圆相交于A、B两点,且线段AB的中点在直线上(1)求此椭圆的离心率;
答案:设A、B两点的坐标分别为 得
, 根据韦达定理,得
∴线段AB的中点坐标为(). 由已知得
故椭圆的离心率为 .
例三线过抛物线的焦点,且与抛物线相交于A两点.
(1) 求证:;
讲解: (1)易求得抛物线的焦点. 若l⊥x轴,则l的方程为.若l不垂直于x轴,可设,代入抛物线方程整理得 . 综上可知 .
(课后练习)
04 北京·文史第17题,本小题满分14分) 如图,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(),B()均在抛物线上。
(I)写出该抛物线的方程及其准线方程
(II)当PA与PB的斜率存在且倾斜角互补时,求的值及直线AB的斜率
22.<2004年天津高考·理工第22题,文史第22题[只做第(1)和(2)问],本小题满分14分> 椭圆的中心是原点O,它的短轴长为,相应于焦点F(c,0)()的准线与x轴相交于点A,|OF|=2|FA|,过点A的直线与椭圆相交于P、Q两点。
(1)求椭圆的方程及离心率;(2)若,求直线PQ的方程;