- 2.76 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
绝密★启用前
2019年普通高等学校招生全国统一考试
文科数学
注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设,则=
A. 2 B. C. D. 1
2.已知集合,则
A. B. C. D.
3.已知,则
A. B. C. D.
4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是
A. 165 cm B. 175 cm C. 185 cm D. 190cm
5.函数f(x)=在[—π,π]的图像大致为
A. B.
C. D.
6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是
A. 8号学生 B. 200号学生 C. 616号学生 D. 815号学生
7.tan255°=
A. -2- B. -2+ C. 2- D. 2+
8.已知非零向量a,b满足=2,且(a–b)b,则a与b的夹角为
A. B. C. D.
9.如图是求的程序框图,图中空白框中应填入
A. A= B. A= C. A= D. A=
10.双曲线C:的 一条渐近线的倾斜角为130°,则C的离心率为
A. 2sin40° B. 2cos40° C. D.
11.△ABC的内角A,B,C的对边分别为a,b,c,已知asinA-bsinB=4csinC,cosA=-,则=
A. 6 B. 5 C. 4 D. 3
12.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.曲线在点处的切线方程为___________.
14.记Sn为等比数列{an}的前n项和.若,则S4=___________.
15.函数的最小值为___________.
16.已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为,那么P到平面ABC的距离为___________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:60分。
17.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:
满意
不满意
男顾客
40
10
女顾客
30
20
(1)分别估计男、女顾客对该商场服务满意的概率;
(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?
附:.
P(K2≥k)
0.050
0.010
0.001
k
3.841
6.635
10.828
18.记Sn为等差数列{an}的前n项和,已知S9=-a5.
(1)若a3=4,求{an}的通项公式;
(2)若a1>0,求使得Sn≥an的n的取值范围.
19.如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN∥平面C1DE;
(2)求点C到平面C1DE的距离.
20.已知函数f(x)=2sinx-xcosx-x,f′(x)为f(x)的导数.
(1)证明:f′(x)在区间(0,π)存在唯一零点;
(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.
21.已知点A,B关于坐标原点O对称,│AB│ =4,⊙M过点A,B且与直线x+2=0相切.
(1)若A在直线x+y=0上,求⊙M的半径.
(2)是否存在定点P,使得当A运动时,│MA│-│MP│为定值?并说明理由.
(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.[选修4-4:坐标系与参数方程]
在直角坐标系xOy中,曲线C的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.
(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.
23.[选修4-5:不等式选讲]
已知a,b,c为正数,且满足abc=1.证明:
(1);
(2).
【答案】1C2C3B4B5D6C7D8B9A10D11A12B
13141516
17(1)由题中表格可知,50名男顾客对商场服务满意的有40人,
所以男顾客对商场服务满意率估计为,
50名女顾客对商场满意的有30人,
所以女顾客对商场服务满意率估计为,
(2)由列联表可知,
所以能有的把握认为男、女顾客对该商场服务的评价有差异.
18(1)设等差数列的首项为,公差为,
根据题意有,
解答,所以,
所以等差数列的通项公式为;
(2)由条件,得,即,
因为,所以,并且有,所以有,
由得,整理得,
因为,所以有,即,
解得,
所以的取值范围是:
19(1)连接,
,分别为,中点 为的中位线
且
又为中点,且 且
四边形为平行四边形
,又平面,平面
平面
(2)在菱形中,为中点,所以,
根据题意有,,
因为棱柱为直棱柱,所以有平面,
所以,所以,
设点C到平面的距离为,
根据题意有,则有,
解得,
所以点C到平面的距离为.
20(1)
令,则
当时,令,解得:
当时,;当时,
在上单调递增;在上单调递减
又,,
即当时,,此时无零点,即无零点
,使得
又在上单调递减 为,即在上唯一零点
综上所述:在区间存在唯一零点
(2)若时,,即恒成立
令
则,
由(1)可知,在上单调递增;在上单调递减
且,,
,
①当时,,即在上恒成立
在上单调递增
,即,此时恒成立
②当时,,,
,使得
在上单调递增,在上单调递减
又,
在上恒成立,即恒成立
③当时,,
,使得
在上单调递减,在上单调递增
时,,可知不恒成立
④当时,
在上单调递减
可知不恒成立
综上所述:
21(1)在直线上 设,则
又 ,解得:
过点, 圆心必在直线上
设,圆的半径为
与相切
又,即
,解得:或
当时,;当时,
的半径为:或
(2)存在定点,使得
说明如下:
,关于原点对称且
直线必为过原点的直线,且
①当直线斜率存在时,设方程为:
则的圆心必在直线上
设,的半径为
与相切
又
,整理可得:
即点轨迹方程为:,准线方程为:,焦点
,即抛物线上点到的距离
当与重合,即点坐标为时,
②当直线斜率不存在时,则直线方程为:
在轴上,设
,解得:,即
若,则
综上所述,存在定点,使得为定值.
22(1)由得:,又
整理可得的直角坐标方程为:
又,
的直角坐标方程为:
(2)设上点的坐标为:
则上的点到直线的距离
当时,取最小值
则
23(1)
当且仅当时取等号
,即:
(2),当且仅当时取等号
又,,(当且仅当时等号同时成立)
又