• 825.50 KB
  • 2021-05-13 发布

高考随机变量及其分布列试题精选

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2011年高考《随机变量及其分布列》试题精选 一、选择题:‎ ‎1.(浙江卷理科9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率 ‎(A) (B) (C) (D ) ‎ ‎【答案】B ‎ ‎【解析】由古典概型的概率公式得.‎ ‎2. (辽宁卷理科5)从1,2,3,4,5中任取2各不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B︱A)=‎ ‎(A) (B) (C) (D)‎ ‎3. (全国新课标卷理科4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ‎(A) (B) (C) (D)‎ 解析:因为甲乙两位同学参加同一个小组有3种方法,两位同学个参加一个小组共有种方法;所以,甲乙两位同学参加同一个小组的概率为 点评:本题考查排列组合、概率的概念及其运算和分析问题、解决问题的能力。‎ ‎4.(广东理6)甲、乙两队进行排球决赛,现在的情形是甲队只要在赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( )‎ ‎ A.     B.        C.      D.‎ ‎【解析】D.由题得甲队获得冠军有两种情况,第一局胜或第一局输第二局胜,所以甲队获得冠军的概率所以选D.‎ ‎5.(湖北卷理科7)如图,用K、A1、A2三类不同的元件连成一个系统.当K正常工作且A1、A2至少有一个正常工作时,系统正常工作.已知K、A1、A2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为 A.0.960 B.‎0.864 ‎C.0.720 D.0.576‎ 答案:B ‎ 解析:系统正常工作概率为,所以选B.‎ ‎6.(陕西卷理科10)甲乙两人一起去“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是 ‎ ‎(A) (B) (C) (D)‎ ‎【答案】D ‎【解析】:各自独立地从1到6号景点中任选4个进行游览有种,且等可能,最后一小时他们同在一个景点有种,则最后一小时他们同在一个景点的概率是,故选D ‎7. (四川卷理科12)在集合中任取一个偶数和一个奇数构成以原点为起点的向量a=(a,b).从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为,其中面积不超过的平行四边形的个数为,则( )‎ ‎(A) (B) (C) (D)‎ 答案:B 解析:基本事件:.其中面积为2的平行四边形的个数;其中面积为4的平行四边形的为; m=3+2=5故. ‎ ‎8.(福建卷理科4)如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于 ‎ A. B. C. D.‎ ‎【答案】C 二、填空题:‎ ‎1.(浙江卷理科15)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率为,且三个公司是否让其面试是相互独立的。记为该毕业生得到面试得公司个数。若,则随机变量的数学期望 ‎ ‎【答案】‎ ‎【解析】:,的取值为0,1,2,3‎ ‎,‎ ‎,‎ 故 ‎2. (江西卷理科12)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则去打篮球;否则,在家看书,则小波周末不在家看书的概率为 【答案】‎ ‎【解析】小波周末不在家看书包含两种情况:一是去看电影;二是去打篮球;所以小波周末不在家看书的概率为.‎ ‎3. (湖南卷理科15)如图4,EFGH是以O为圆心,半径为1的圆内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则(1) ;(2) .‎ 答案:; ‎ 解析:(1)是几何概型:;(2)是条件概率:.‎ 评析:本小题主要考查几何概型与条件概率的计算.‎ ‎4. (湖北卷理科12)在30瓶饮料中,有3瓶已过了保质期,从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期的概率为 (结果用最简分数表示)‎ 答案: 解析:因为30瓶饮料中未过期饮料有30-3=27瓶,故其概率为.‎ ‎5.(重庆卷理科13)将一枚均匀的硬币投掷6次,则正面出现的次数比反面出现的次数多的概率为 ‎ 解析: 。硬币投掷6次,有三类情况,①正面次数比反面次数多;②反面次数比正面次数多;③正面次数而后反面次数一样多;,③概率为,①②的概率显然相同,故①的概率为 ‎6.(安徽卷江苏5)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______【答案】‎ ‎【解析】从1,2,3,4这四个数中一次随机取两个数,所有可能的取法有6种, 满足“其中一个数是另一个的两倍”的所有可能的结果有(1,2),(2,4)共2种取法,所以其中一个数是另一个的两倍的概率是.‎ ‎7.(福建卷理科13)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个。若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______。【答案】‎ ‎8.(上海卷理科9)马老师从课本上抄录一个随机变量的概率分布律如下表 请小牛同学计算的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯 定这两个“?”处的数值相同。据此,小牛给出了正确答案 。【答案】‎ ‎9.(上海卷理科12)随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到)。【答案】‎ 三、解答题:‎ ‎1. (全国卷理科18)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立 ‎(I)求该地1位车主至少购买甲、乙两种保险中的l种的概率;‎ ‎(Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。求的期望。 ‎ ‎【解析】:设该车主购买乙种保险的概率为,由题:,解得 ‎(Ⅰ)设所求概率为,则故该地1位车主至少购买甲、乙两种保险中的l种的概率为0.8.‎ ‎(Ⅱ) 甲乙两种保险都不购买的概率为1-0.8=0.2.设甲乙两种保险都不购买的车主数为,则B(100,0.2),‎ 答:该地1位车主至少购买甲、乙两种保险中的l种的概率为0.8, 的期望值是20。‎ ‎2.(四川卷理科18)本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算)。有人独立来该租车点则车骑游。各租一车一次。设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时。‎ ‎(Ⅰ)求出甲、乙所付租车费用相同的概率;‎ ‎(Ⅱ)求甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望;‎ 解析:‎ (1) 所付费用相同即为元。‎ 设付0元为, 付2元为, 付4元为 则所付费用相同的概率为 ‎(2)设甲,乙两个所付的费用之和为,可为 分布列 ‎3. (山东卷理科18)红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。‎ ‎(Ⅰ)求红队至少两名队员获胜的概率;‎ ‎(Ⅱ)用表示红队队员获胜的总盘数,求的分布列和数学期望.‎ ‎【解析】(Ⅰ)红队至少两名队员获胜的概率为=0.55.‎ ‎(Ⅱ)取的可能结果为0,1,2,3,则 ‎=0.1; ++=0.35;‎ ‎=0.4; =0.15.‎ 所以的分布列为 ‎0‎ ‎1‎ ‎2‎ ‎3‎ P ‎0.1‎ ‎0.35‎ ‎0.4‎ ‎0.15‎ 数学期望=0×0.1+1×0.35+2×0.4+3×0.15=1.6.‎ ‎4. (天津卷理科16)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)‎ ‎(Ⅰ)求在一次游戏中,(i)摸出3个白球的概率;(ii)获奖的概率;‎ ‎(Ⅱ)求在两次游戏中获奖次数的分布列及数学期望.‎ ‎【解析】本小题主要考查古典概型及其概率计算公式、离散型随机变量的分布列、互斥事件和相互独立事件等基础知识,考查运用概率知识解决简单的实际问题的能力.‎ ‎(Ⅰ)(i)设“在一次游戏中摸出i个白球”为事件,则.‎ ‎(ii)设“在一次游戏中获奖”为事件B,则B=,‎ 又,且互斥, 所以.‎ ‎(Ⅱ)由题意可知的所有可能取值为0,1,,2,‎ P(=0)=, P(=1)=, P(=2) =,‎ 所以的分布列是 ‎0‎ ‎1‎ ‎2‎ P 的数学期望=+=.‎ ‎5.(江西卷理科16)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4‎ 杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,令X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力.‎ ‎ (1)求X的分布列; (2)求此员工月工资的期望.‎ 解析:(1)X的所有可能取值为0,1,2,3,4,‎ 则,所以所求的分布列为 X ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ P ‎(2)设Y表示该员工的月工资,则Y的所有可能取值为3500,2800,2100,‎ 相对的概率分别为,,,‎ 所以.‎ 所以此员工工资的期望为2280元.‎ 本题考查排列、组合的基础知识及概率分布、数学期望.‎ ‎6.(重庆卷理科17)某市公租房房屋位于A.B.C三个地区,设每位申请人只申请其中一个片区的房屋,且申请其中任一个片区的房屋是等可能的,求该市的任4位申请人中:‎ ‎(Ⅰ)若有2人申请A片区房屋的概率;(Ⅱ)申请的房屋在片区的个数的分布列与期望。‎ 解析:(Ⅰ)所有可能的申请方式有种,恰有2人申请A片区房源的申请方式有种,从而恰有2人申请A片区房源的概率为 ‎ (Ⅱ)的所有可能值为1,2,3.又 ‎,,‎ 综上知,的分布列为:‎ ‎ ‎ ‎ 1‎ ‎ 2‎ ‎ 3‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ 从而有 ‎7. (湖南卷理科18)某商店试销某种商品20天,获得如下数据:‎ 日销售量(件)‎ ‎0‎ ‎1‎ ‎2‎ ‎3‎ 频数 ‎1‎ ‎5‎ ‎9‎ ‎5‎ 试销结束后(假设该商品的日销售量的分布规律不变).设某天开始营业时由该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货.将频率视为概率.‎ 求当天商店不进货的概率;记为第二天开始营业时该商品视为件数,求的分布列和数学期望.‎ 解:=+‎ 由题意知,的可能取值为2,3.‎ ‎+‎ ‎+‎ 故的分布列为 所以的数学期望为.‎ 评析:本大题主要考查生活中的概率统计知识和方法.求离散型随机变量的分布列和数学期望的方法,以及互斥事件概率的求法.‎ ‎8.(陕西卷理科20)如图,A地到火车站共有两条路径 和 ,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:‎ 时间(分钟)‎ ‎ 的频率 ‎0.1‎ ‎0.2‎ ‎0.3‎ ‎0.2‎ ‎0.2‎ ‎ 的频率 ‎0‎ ‎0.1‎ ‎0.4‎ ‎0.4‎ ‎0.1‎ 现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。‎ ‎(Ⅰ)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?‎ ‎(Ⅱ)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(Ⅰ)的选择方案,求X的分布列和数学期望。‎ ‎【解析】:(Ⅰ) 表示事件“甲选择路径时,40分钟内赶到火车站”, 表示事件“乙选择路径时,50分钟内赶到火车站”, 用频率估计相应的概率可得,。甲应选择 ‎,乙应选择 ‎(Ⅱ)A、B分别表示针对(Ⅰ)的选择方案,甲、乙在各自允许的时间内赶到火车站,由(Ⅰ)知 又由题意知,A,B独立,‎ ‎ ‎ X的分布列为 X ‎0‎ ‎1‎ ‎2‎ P ‎0.04‎ ‎0.42‎ ‎0.54‎ ‎ ‎ ‎9. (辽宁卷理科19)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.‎ ‎ (I)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;‎ ‎ (II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:‎ 分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?‎ 附:样本数据x1,x2,…,xa的样本方差,其中为样本平均数.‎ ‎(I)X可能的取值为0,1,2,3,4,且 即X的分布列为 X ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ P X的数学期望是:‎ ‎.‎ ‎(II)品种甲的每公顷产量的样本平均数和样本方差分别为:‎ ‎ ………………8分 品种乙的每公顷产量的样本平均数和样本方差分别为:‎ ‎ ………………10分 由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.‎