- 1.18 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2009年普通高等学校招生全国统一考试(海南卷)
数学(理工农医类)
第I卷
选择题:(本大题共12题,每小题5分,在每小题给出的四个选项中 ,中有一项是符合题目要求的。
已知集合,则
(A) (B)
(C) (D)
(2) 复数
(A)0 (B)2 (C)-2i (D)2
(3)对变量x, y 有观测数据理力争(,)(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据(,)(i=1,2,…,10),得散点图2. 由这两个散点图可以判断。
(A)变量x 与y 正相关,u 与v 正相关 (B)变量x 与y 正相关,u 与v 负相关
(C)变量x 与y 负相关,u 与v 正相关 (D)变量x 与y 负相关,u 与v 负相关
(4)双曲线-=1的焦点到渐近线的距离为
(A) (B)2 (C) (D)1
(5)有四个关于三角函数的命题:
:xR, += : x、yR, sin(x-y)=sinx-siny
: x,=sinx : sinx=cosyx+y=
其中假命题的是
(A), (B), (3), (4),
(6)设x,y满足
(A)有最小值2,最大值3 (B)有最小值2,无最大值
(C)有最大值3,无最小值 (D)既无最小值,也无最大值
(7)等比数列的前n项和为,且4,2,成等差数列。若=1,则=
(A)7 (B)8 (3)15 (4)16
(8) 如图,正方体的棱线长为1,线段上有两个动点E,F,且,则下列结论中错误的是
(A)
(B)
(C)三棱锥的体积为定值
(D)异面直线所成的角为定值
(9)已知O,N,P在所在平面内,且,且,则点O,N,P依次是的
(A)重心 外心 垂心 (B)重心 外心 内心
(C)外心 重心 垂心 (D)外心 重心 内心
(注:三角形的三条高线交于一点,此点为三角型的垂心)
(10)如果执行右边的程序框图,输入,那么输出的各个数的合等于
(A)3 (B) 3.5 (C) 4 (D)4.5
(11)一个棱锥的三视图如图,则该棱锥的全面积(单位:c)为
(A)48+12 (B)48+24 (C)36+12 (D)36+24
(12)用min{a,b,c}表示a,b,c三个数中的最小值
设f(x)=min{, x+2,10-x} (x 0),则f(x)的最大值为
(A)4 (B)5 (C)6 (D)7
第II卷
二、填空题;本大题共4小题,每小题5分。
(13)设已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线l与抛物线C相交于A,B两点。若AB的中点为(2,2),则直线的方程为_____________.
(14)已知函数y=sin(x+)(>0, -<)的图像如图所示,则 =________________
(15)7名志愿者中安排6人在周六、周日两天参加社区公益活动。若每天安排3人,则不同的安排方案共有________________种(用数字作答)。
(16)等差数列{}前n项和为。已知+-=0,=38,则m=_______
三、解答题:解答应写出说明文字,证明过程或演算步骤。
(17)(本小题满分12分)
为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如示意图),飞机能够测量的数据有俯角和A,B间的距离,请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M,N间的距离的步骤。
(18)(本小题满分12分)
某工厂有工人1000名, 其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人),现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)。
(I)求甲、乙两工人都被抽到的概率,其中甲为A类工人,乙为B类工人;
(II)从A类工人中的抽查结果和从B类工人中的抽插结果分别如下表1和表2.
表1:
生产能力分组
人数
4
8
5
3
表2:
生产能力分组
人数
6
y
36
18
(i)先确定x,y,再在答题纸上完成下列频率分布直方图。就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
(ii)分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数,同一组中的数据用该组区间的中点值作代表)
(19)(本小题满分12分)
如图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。
(Ⅰ)求证:AC⊥SD;
(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大小
(Ⅲ)在(Ⅱ)的条件下,侧棱SC上是否存在一点E,
使得BE∥平面PAC。若存在,求SE:EC的值;
若不存在,试说明理由。
(20)(本小题满分12分)
已知椭圆C的中心为直角坐标系xOy的原点,焦点在s轴上,它的一个顶点到两个焦点的距离分别是7和1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,=λ,求点M的轨迹方程,并说明轨迹是什么曲线。
(21)(本小题满分12分)
已知函数
如,求的单调区间;
若在单调增加,在单调减少,证明
<6.
请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分。作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑。
(22)本小题满分10分)选修4-1:几何证明选讲
如图,已知的两条角平分线和相交于H,,F在上,
且。
证明:B,D,H,E四点共圆:
证明:平分。
(23)(本小题满分10分)选修4—4:坐标系与参数方程。
已知曲线C: (t为参数), C:(为参数)。
(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C上的点P对应的参数为,Q为C上的动点,求中点到直线
(t为参数)距离的最小值。
(24)(本小题满分10分)选修4-5:不等式选讲
如图,O为数轴的原点,A,B,M为数轴上三点,C为线段OM上的动点,设x表示C与原点的距离,y 表示C到A距离4倍与C道B距离的6倍的和.
(1)将y表示成x的函数;
(2)要使y的值不超过70,x 应该在什么范围内取值?
2009年普通高校招生全国统一考试
理数数学试题参考答案
选择题
(1) A (2) D (3) C (4) A (5) A (6) B
(7) C (8) D (9) C (10) B (11) A (12) C
二.填空题
(13) (14) (15) 140 (16) 10
三.解答题
(17) 解:
方案一:①需要测量的数据有:A
点到M,N点的俯角;B点到M,
N的俯角;A,B的距离 d (如图)
所示) . ……….3分
②第一步:计算AM . 由正弦定理 ;
第二步:计算AN . 由正弦定理 ;
第三步:计算MN. 由余弦定理 .
方案二:①需要测量的数据有:
A点到M,N点的俯角,;B点到M,N点的府角,;A,B的距离 d (如图所示).
②第一步:计算BM . 由正弦定理 ;
第二步:计算BN . 由正弦定理 ;
第三步:计算MN . 由余弦定理
解:
(Ⅰ)甲、乙被抽到的概率均为,且事件“甲工人被抽到”与事件“乙工人被抽到”相互独立,故甲、乙两工人都被抽到的概率为
.
(Ⅱ)(i)由题意知A类工人中应抽查25名,B类工人中应抽查75名.
故 ,得,
,得 .
频率分布直方图如下
从直方图可以判断:B类工人中个体间的关异程度更小 .
(ii) ,
,
A类工人生产能力的平均数,B类工人生产能力的平均数以及全工厂工人生产能力的平均数的会计值分别为123,133.8和131.1 .
(19)解法一:
(Ⅰ)连BD,设AC交BD于O,由题意。在正方形ABCD中,,所以,得.
(Ⅱ)设正方形边长,则。
又,所以,
连,由(Ⅰ)知,所以,
且,所以是二面角的平面角。
由,知,所以,
即二面角的大小为。
(Ⅲ)在棱SC上存在一点E,使
由(Ⅱ)可得,故可在上取一点,使,过作的平行线与的交点即为。连BN。在中知,又由于,故平面,得,由于,故.
解法二:
(Ⅰ);连,设交于于,由题意知.以O为坐标原点,分别为轴、轴、轴正方向,建立坐标系如图。
设底面边长为,则高。
于是
故
从而
(Ⅱ)由题设知,平面的一个法向量,平面的一个法向量,设所求二面角为,则,所求二面角的大小为
(Ⅲ)在棱上存在一点使.
由(Ⅱ)知是平面的一个法向量,
且
设
则
而
即当时,
而不在平面内,故
(20)解:
(Ⅰ)设椭圆长半轴长及半焦距分别为,由已知得
,
所以椭圆的标准方程为
(Ⅱ)设,其中。由已知及点在椭圆上可得
。
整理得,其中。
(i)时。化简得
所以点的轨迹方程为,轨迹是两条平行于轴的线段。
(ii)时,方程变形为,其中
当时,点的轨迹为中心在原点、实轴在轴上的双曲线满足的部分。
当时,点的轨迹为中心在原点、长轴在轴上的椭圆满足的部分;
当时,点的轨迹为中心在原点、长轴在轴上的椭圆;
(21)解:
(Ⅰ)当时,,故
当
当
从而单调减少.
(Ⅱ)
由条件得:从而
因为所以
将右边展开,与左边比较系数得,故
又由此可得
于是
(22)解:
(Ⅰ)在△ABC中,因为∠B=60°,
所以∠BAC+∠BCA=120°.
因为AD,CE是角平分线,
所以∠HAC+∠HCA=60°,
故∠AHC=120°.
于是∠EHD=∠AHC=120°.
因为∠EBD+∠EHD=180°,
所以B,D,H,E四点共圆.
(Ⅱ)连结BH,则BH为∠ABC的平分线,得∠HBD=30°
由(Ⅰ)知B,D,H,E四点共圆,
所以∠CED=∠HBD=30°.
又∠AHE=∠EBD=60°,由已知可得EF⊥AD,
可得∠CEF=30°.
所以CE平分∠DEF.
(23)解:
(Ⅰ)
为圆心是(,半径是1的圆.
为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.
(Ⅱ)当时,
为直线
从而当时,
(24)解:
(Ⅰ)
(Ⅱ)依题意,x满足
{
解不等式组,其解集为【9,23】
所以