- 865.50 KB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
备战2010高考数学――压轴题跟踪演练系列四
1.(本小题满分14分)
已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足
(Ⅰ)设为点P的横坐标,证明;
(Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M,
使△F1MF2的面积S=若存在,求∠F1MF2
的正切值;若不存在,请说明理由.
本小题主要考查平面向量的概率,椭圆的定义、标准方程和有关性质,轨迹的求法和应用,以及综合运用数学知识解决问题的能力.满分14分.
(Ⅰ)证法一:设点P的坐标为
由P在椭圆上,得
由,所以 ………………………3分
证法二:设点P的坐标为记
则
由
证法三:设点P的坐标为椭圆的左准线方程为
由椭圆第二定义得,即
由,所以…………………………3分
(Ⅱ)解法一:设点T的坐标为
当时,点(,0)和点(-,0)在轨迹上.
当|时,由,得.
又,所以T为线段F2Q的中点.
在△QF1F2中,,所以有
综上所述,点T的轨迹C的方程是…………………………7分
解法二:设点T的坐标为 当时,点(,0)和点(-,0)在轨迹上.
当|时,由,得.
又,所以T为线段F2Q的中点.
设点Q的坐标为(),则
因此 ①
由得 ②
将①代入②,可得
综上所述,点T的轨迹C的方程是……………………7分
③
④
(Ⅲ)解法一:C上存在点M()使S=的充要条件是
w.w.w.g.k.x.x.c.o.m
由③得,由④得 所以,当时,存在点M,使S=;
当时,不存在满足条件的点M.………………………11分
当时,,
由,
,
,得
解法二:C上存在点M()使S=的充要条件是
③
④
由④得 上式代入③得
于是,当时,存在点M,使S=;
当时,不存在满足条件的点M.………………………11分
当时,记,
由知,所以…………14分
2.(本小题满分12分)
函数在区间(0,+∞)内可导,导函数是减函数,且 设
是曲线在点()得的切线方程,并设函数w.w.w.g.k.x.x.c.o.m
(Ⅰ)用、、表示m;
(Ⅱ)证明:当;
(Ⅲ)若关于的不等式上恒成立,其中a、b为实数,
求b的取值范围及a与b所满足的关系.
本小题考查导数概念的几何意义,函数极值、最值的判定以及灵活运用数形结合的思想判断函数之间的大小关系.
考查学生的学习能力、抽象思维能力及综合运用数学基本关系解决问题的能力.满分12分
(Ⅰ)解:…………………………………………2分
(Ⅱ)证明:令
因为递减,所以递增,因此,当;
当.所以是唯一的极值点,且是极小值点,可知的
最小值为0,因此即…………………………6分
(Ⅲ)解法一:,是不等式成立的必要条件,以下讨论设此条件成立.
对任意成立的充要条件是
另一方面,由于满足前述题设中关于函数的条件,利用(II)的结果可知,的充要条件是:过点(0,)与曲线相切的直线的斜率大于,该切线的方程为
于是的充要条件是…………………………10分
综上,不等式对任意成立的充要条件是
①
显然,存在a、b使①式成立的充要条件是:不等式 ②
有解、解不等式②得 ③
因此,③式即为b的取值范围,①式即为实数在a与b所满足的关系.…………12分
(Ⅲ)解法二:是不等式成立的必要条件,以下讨论设此条件成立.
对任意成立的充要条件是
………………………………………………………………8分
令,于是对任意成立的充要条件是
由
当时当时,,所以,当时,取最小值.因此成立的充要条件是,即………………10分
综上,不等式对任意成立的充要条件是
①
显然,存在a、b使①式成立的充要条件是:不等式 ②
有解、解不等式②得
因此,③式即为b的取值范围,①式即为实数在a与b所满足的关系.…………12分
3.(本小题满分12分)
已知数列的首项前项和为,且
(I)证明数列是等比数列;
(II)令,求函数在点处的导数并比较与的大小.
解:由已知可得两式相减得
即从而当时所以又所以从而
故总有,又从而即数列是等比数列;
(II)由(I)知
因为所以
从而=
=-=
由上-=
=12①
当时,①式=0所以;
当时,①式=-12所以
当时,
又
所以即①从而
4.(本小题满分14分)
已知动圆过定点,且与直线相切,其中.
(I)求动圆圆心的轨迹的方程;
(II)设A、B是轨迹上异于原点的两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.
解:(I)如图,设为动圆圆心,为记为,过点作直线的垂线,垂足为,由题意知:即动点到定点与定直线的距离相等,由抛物线的定义知,点的轨迹为抛物线,其中为焦点,为准线,所以轨迹方程为;
(II)如图,设,由题意得(否则)且所以直线的斜率存在,设其方程为,显然,将与联立消去,得由韦达定理知
①
(1)当时,即时,所以,所以由①知:所以因此直线的方程可表示为,即所以直线恒过定点
(2)当时,由,得==
将①式代入上式整理化简可得:,所以,
此时,直线的方程可表示为即
所以直线恒过定点
所以由(1)(2)知,当时,直线恒过定点,当时直线恒过定点.
5.(本小题满分12分)
已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.
(Ⅰ)求双曲线C2的方程;
(Ⅱ)若直线与椭圆C1及双曲线C2都恒有两个不同的交点,且l与C2的两个交点A和B满足(其中O为原点),求k的取值范围.
解:(Ⅰ)设双曲线C2的方程为,则
故C2的方程为
(II)将
由直线l与椭圆C1恒有两个不同的交点得
即 ①
.
由直线l与双曲线C2恒有两个不同的交点A,B得
解此不等式得
③
由①、②、③得
故k的取值范围为
6.(本小题满分12分)
数列{an}满足.
(Ⅰ)用数学归纳法证明:;
(Ⅱ)已知不等式,其中无理数e=2.71828….
(Ⅰ)证明:(1)当n=2时,,不等式成立.
(2)假设当时不等式成立,即
那么. 这就是说,当时不等式成立.
根据(1)、(2)可知:成立.
(Ⅱ)证法一:
由递推公式及(Ⅰ)的结论有
两边取对数并利用已知不等式得
故
上式从1到求和可得
即
(Ⅱ)证法二:
由数学归纳法易证成立,故
令
取对数并利用已知不等式得
上式从2到n求和得
因
故成立.
7.(本小题满分12分)
已知数列
(1)证明
(2)求数列的通项公式an.
解:(1)方法一 用数学归纳法证明:
1°当n=1时,
∴,命题正确.
2°假设n=k时有
则
而
又
∴时命题正确.
由1°、2°知,对一切n∈N时有
方法二:用数学归纳法证明:
1°当n=1时,∴;
2°假设n=k时有成立,
令,在[0,2]上单调递增,所以由假设
有:即
也即当n=k+1时 成立,所以对一切
(2)下面来求数列的通项:所以
,
又bn=-1,所以
版权所有 高考学习网 w.w.w.g.k.x.x.c.o.m