- 2.27 MB
- 2021-05-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第06节 正弦定理和余弦定理
班级__________ 姓名_____________ 学号___________ 得分__________
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.【2018届浙江省绍兴市3月模拟】在中,内角为钝角,,,,则( )
A. B. C. D.
【答案】A
【解析】由题得,由余弦定理得
故选A.
2.【腾远2018年(浙江卷)红卷】在中,内角所对的边分别是,若,则角的值为( )
A. B. C. D.
【答案】C
【解析】分析:由正弦定理可化简得,再由余弦定理得,即可求解结果.
详解:在,因为
由正弦定理可化简得,所以,
由余弦定理得,从而,故选C.
3.【2018届辽宁省凌源市高三上学期期末】在中,角的对边分别为,且的面积,且,则( )
A. B. C. D.
【答案】B
14
4.【2018届云南省师范大学附属中学月考一】已知分别是的三条边及相对三个角,满足,则的形状是( )
A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 等腰直角三角形
【答案】B
【解析】由正弦定理得: ,又,所以有,即,所以是等边三角形,故选B.
5.已知在中,,则的形状是( )
A.直角三角形 B.等腰三角形或直角三角形
C.正三角形 D.等腰直角三角形
【答案】A
【解析】由正弦定理得,∴,
∴.
∵在三角形中有,
∴.
∴.
∵,∴,即.
故为直角三角形.选A.
6.【2018届黑龙江省仿真模拟(四)】在中,,,为的中点,的面积为,则等于( )
A. B. C. D.
【答案】B
14
【解析】分析:在△BCD中,由面积公式可得BC,再由余弦定理可得结果.
详解:由题意可知在△BCD中,B=,AD=1,
∴△BCD的面积S=×BC×BD×sinB=×BC×=,
解得BC=3,在△ABC中由余弦定理可得:
AC2=AB2+BC2﹣2AB•BCcosB=22+32﹣2•2•3•=7,
∴AC=,
故选:B.
7.【2018届湖北省宜昌市一中考前训练2】在中,分别为内角的对边,若,且,则( )
A. B. C. D.
【答案】A
【解析】分析:由正弦定理可得,由余弦定理可得,由三角形的面积公式,解方程组即可得结果.
14
8.【2018届安徽省合肥市第一中学冲刺高考最后1卷】中,的对边分别为.已知,则的值为( )
A. B. C. D.
【答案】B
【解析】分析:先化简得到,再化简得解.
详解:因为,所以
所以
所以
因为,
所以
所以
故答案为:B
9.【2018届安徽省安庆市第一中学高考热身】已知锐角的三个内角的对边分别为,若,则的值范围是( )
A. B. C. D.
【答案】D
【解析】分析:由、倍角公式和正弦定理得,故,根据是锐角三角形可得,于是可得所求范围.
详解:∵,
∴,
由正弦定理得,
∴,
∴.
∵是锐角三角形,
14
∴,解得,
∴,
∴.
即的值范围是.
10.【2019届河南省信阳高级中学高三第一次大考】在△ABC中,角A,B,C的对边分别为a,b,c,若=,b=4,则△ABC的面积的最大值为( )
A. 4 B. 2 C. 3 D.
【答案】A
【解析】分析:由已知式子和正弦定理可得,再由余弦定理可得,由三角形的面积公式可得所求.
详解:∵在△ABC中=,
∴,
由正弦定理得,
∴.
又,
∴,
∵,
∴.
在△ABC中,由余弦定理得
,
∴,当且仅当时等号成立.
∴△ABC的面积.
故选A.
二、填空题:本大题共7小题,共36分.
14
11.【2017课标3,文15】△ABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b=,c=3,则A=_________.
【答案】75°
【解析】由题意:,即,结合可得,则.
12.【2018年新课标I卷文】△的内角的对边分别为,已知,,则△的面积为________.
【答案】
【解析】分析:首先利用正弦定理将题中的式子化为,化简求得,利用余弦定理,结合题中的条件,可以得到,可以断定A为锐角,从而求得,进一步求得,利用三角形面积公式求得结果.
详解:根据题意,结合正弦定理可得,即,结合余弦定理可得,所以A为锐角,且,从而求得,所以△的面积为,故答案是.
13.【2018年文北京卷】若的面积为,且∠C为钝角,则∠B=_________;的取值范围是_________.
【答案】
14
14.【2018届浙江省教育绿色评价联盟5月适应性考试】在△中,内角的对边分别为.已知,,,则______,______.
【答案】
【解析】分析:由,,,利用正弦定理和余弦定理及三角形的面积公式可求出结果.
详解:由于,
则,解得,
由于,利用正弦定理,
则,整理得,
解得,由,
解得,,
则,故答案为,.
15.【2018届浙江省温州市(一模)】如图,四边形中,、分别是以和为底的等腰三角形,其中,,,则__________,__________.
14
【答案】 2
【解析】设,在内,,在内,,可得, ,由余弦定理可得,,故答案为.
16.【2018届江西省(宜春中学、丰城中学、樟树中学、高安二中、丰城九中、新余一中)六校第五次联考】在中,角的对边分别为,且,若的面积为,则的最小值为__________.
【答案】12
【解析】由正弦定理可得,即,∴,∴, ,由,∴,再由余弦定理可得,整理可得,当且仅当时,取等号,∴故答案为12.
17.【2018届四川省成都市第七中学三诊】在锐角中,角、、所对的边分别为,且、、成等差数列,,则面积的取值范围是__________.
【答案】
14
详解:∵中、、成等差数列,
∴.
由正弦定理得,
∴,
∴
,
∵为锐角三角形,
∴,解得.
∴,
∴,
∴,
故面积的取值范围是.
三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.
18.【2018年天津卷文理】在中,内角A,B,C所对的边分别为a,b,c.已知
14
.
(I)求角B的大小;
(II)设a=2,c=3,求b和的值.
【答案】(Ⅰ);(Ⅱ),.
【解析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得,则B=.
(Ⅱ)在△ABC中,由余弦定理可得b=.结合二倍角公式和两角差的正弦公式可得
详解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=.
(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.
由,可得.因为a
相关文档
- 上海高中高考数学知识点总结大全2021-05-1317页
- 高考地理 第19讲 城市化(含解析)【更2021-05-136页
- 高中生物课堂笔记生物必修3来源:学2021-05-1327页
- 高中物理论文:基于两道物理高考题的2021-05-139页
- 高中选修物质与结构高考试题汇总至2021-05-1322页
- 金太阳 1 00所名校高中生物高考模2021-05-137页
- 2020版高中数学 第2章 算法初步测2021-05-138页
- 山东春季高考海曲高中数学模拟试题2021-05-136页
- 高考背诵篇目 高中篇初中篇2021-05-1318页
- 上海高中高考化学重要知识点总结完2021-05-1354页