• 751.00 KB
  • 2021-05-13 发布

高考全国卷理科数学真题附含答案解析

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2018年普通高等学校招生全国统一考试 理科数学 本试卷共23题,共150分,共5页。‎ 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。‎ ‎1. ‎ ‎ A. B. C. D. ‎ ‎2.已知集合A={(x,y)|x ²+y ²≤3,x∈Z,y∈Z},则A中元素的个数为 ‎ A.9 B.8 C.5 D.4‎ ‎3.函数f(x)=e ²-e-x/x ²的图像大致为 ‎ A.‎ ‎ ‎ B.‎ C.‎ D.‎ ‎4.已知向量a,b满足∣a∣=1,a·b=-1,则a·(2a-b)=‎ ‎ A.4 B.3 C.2 D.0‎ ‎5.双曲线x ²/a ²-y ²/b ²=1(a﹥0,b﹥0)的离心率为,则其渐进线方程为 ‎ A.y=±x B.y=±x C.y=± D.y=±‎ ‎6.在中,cos=,BC=1,AC=5,则AB=‎ A.4 B. C. D.2‎ ‎7.为计算s=1-+-+…+-,设计了右侧的程序框图,则在空白框中应填入 A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4‎ ‎8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23,在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D. ‎ ‎9.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=则异面直线AD1与DB1所成角的余弦值为 A. B. ‎ ‎10.若f(x)=cosx-sinx在[-a,a]是减函数,则a的最大值是 A. B. C. D. π ‎11.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x)。若f(1)=2,则f(1)+ f(2)+ f(3)+…+f(50)=‎ A.-50    B.0    C.2     D.50‎ ‎12.已知F1,F2是椭圆C: =1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为 A..     B.    C.     D. ‎ 二、填空题:本题共4小题,每小题5分,共20分。‎ ‎13.曲线y=2ln(x+1)在点(0,0)处的切线方程为________。‎ ‎14.若x,y满足约束条件则z=x+y的最大值为_________。‎ ‎15.已知sinα+cosβ=1,cosα+sinβ=0,则sin(α+β)=________。‎ ‎16.已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为,则该圆锥的侧面积为________。‎ 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。‎ ‎(一)必考题:共60分。‎ ‎17.(12分)记Sn为等差数列{an}的前n项和,已知a1=-7,S1=-15。‎ ‎(1)求{an}的通项公式;‎ ‎(2)求Sn,并求Sn的最小值。‎ ‎18.(12分)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图 为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型。根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:=-30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:=99+17.5t。‎ ‎(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;‎ ‎(2)你认为用哪个模型得到的预测值更可靠?并说明理由。‎ ‎19.(12分)设抛物线C:y²=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,| AB|=8。‎ ‎(1)求l的方程;‎ ‎(2)求过点A,B且与C的准线相切的圆的方程。‎ ‎20.(12分)如图,在三棱锥P-ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点。‎ ‎(1)证明:PO⊥平面ABC;‎ ‎(2)若点M在棱BC上,且二面角M-PA-C为30°,求PC与平面PAM所成角的正弦值。‎ ‎21、(12分)已经函数f(x)=ex-ax2。‎ ‎(1)若a=1,证明:当x≥ 0时,f(x)≥ 1;‎ ‎(2)若f(x)在(0,+∞)只有一个零点,求a。‎ ‎(二)选考题:共10分,请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。‎ ‎22、[选修4-4:坐标系与参数方程](10分)‎ 在直角坐标系中xOy中,曲线C的参数方程为( θ 为参数),直线l的参数方程为,(t为参数)。‎ ‎(1)求C和l的直角坐标方程;‎ ‎(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率。‎ ‎23:[选修4-5:不等式选讲](10分)‎ 设函数f(x)=5-| x+a|-| x-2|。‎ ‎(1)当a=1时,求不等式f(x)≥ 0的解集;‎ ‎(2)若f(x)≤ 1时,求a的取值范围。‎ 参考答案:‎ 一、选择题 ‎1.D 2.A 3.B 4.B 5.A 6.A ‎7.B 8.C 9.C 10.A 11.C 12.D 二、填空题 ‎13. 14.9 15. 16.‎ 三、解答题 ‎17. (12分)‎ 解:(1)设的公差为d,由题意得.‎ 由得d=2.‎ 所以的通项公式为.‎ ‎(2)由(1)得.‎ 所以当n=4时,取得最小值,最小值为−16.‎ ‎18.(12分)‎ 解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 ‎(亿元).‎ 利用模型②,该地区2018年的环境基础设施投资额的预测值为 ‎(亿元).‎ ‎(2)利用模型②得到的预测值更可靠.‎ 理由如下:‎ ‎(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线上下.这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.学.科网 ‎(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠.‎ 以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.‎ ‎19.(12分)‎ 解:(1)由题意得,l的方程为.‎ 设,‎ 由得.‎ ‎,故.‎ 所以.‎ 由题设知,解得(舍去),.‎ 因此l的方程为.‎ ‎(2)由(1)得AB的中点坐标为,所以AB的垂直平分线方程为,即.‎ 设所求圆的圆心坐标为,则 解得或 因此所求圆的方程为或.‎ ‎20.(12分)‎ 解:(1)因为,为的中点,所以,且.‎ 连结.因为,所以为等腰直角三角形,‎ 且,.‎ 由知.‎ 由知平面.‎ ‎(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.‎ 由已知得取平面的法向量.‎ 设,则.‎ 设平面的法向量为.‎ 由得,可取,‎ 所以.由已知得.‎ 所以.解得(舍去),.‎ 所以.又,所以.‎ 所以与平面所成角的正弦值为.‎ ‎21.(12分)‎ ‎【解析】(1)当时,等价于.‎ 设函数,则.‎ 当时,,所以在单调递减.‎ 而,故当时,,即.‎ ‎(2)设函数.‎ 在只有一个零点当且仅当在只有一个零点.‎ ‎(i)当时,,没有零点;‎ ‎(ii)当时,.‎ 当时,;当时,.‎ 所以在单调递减,在单调递增.‎ 故是在的最小值.学&科网 ‎①若,即,在没有零点;‎ ‎②若,即,在只有一个零点;‎ ‎③若,即,由于,所以在有一个零点,‎ 由(1)知,当时,,所以.‎ 故在有一个零点,因此在有两个零点.‎ 综上,在只有一个零点时,.‎ ‎22.[选修4-4:坐标系与参数方程](10分)‎ ‎【解析】(1)曲线的直角坐标方程为.‎ 当时,的直角坐标方程为,‎ 当时,的直角坐标方程为.‎ ‎(2)将的参数方程代入的直角坐标方程,整理得关于的方程 ‎.①‎ 因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.‎ 又由①得,故,于是直线的斜率.‎ ‎23.[选修4-5:不等式选讲](10分)‎ ‎【解析】(1)当时,‎ 可得的解集为.‎ ‎(2)等价于.‎ 而,且当时等号成立.故等价于.‎ 由可得或,所以的取值范围是.‎