• 1.21 MB
  • 2021-05-13 发布

备战高考物理历年真题专题动量和能量

  • 52页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
备战2012年高考物理历年真题 专题14 动量和能量 ‎【2011高考】‎ v L ‎1.(全国)质量为M,内壁间距为L的箱子静止于光滑的水平面上,箱子中间有一质量为m的小物块,小物块与箱子底板间的动摩擦因数为μ。初始时小物块停在箱子正中间,如图所示。现给小物块一水平向右的初速度v,小物块与箱壁碰撞N次后恰又回到箱子正中间,并与箱子保持相对静止。设碰撞都是弹性的,则整个过程中,系统损失的动能为 A.mv2 B.v2 C.NμmgL D.NμmgL ‎2.(福建)(20分)‎ 如图甲,在x<0的空间中存在沿y轴负方向的匀强电场和垂直于xoy平面向里的匀强磁场,电场强度大小为E,磁感应强度大小为B.一质量为m、电荷量为q(q>0)的粒子从坐标原点O处,以初速度v0沿x轴正方向射人,粒子的运动轨迹见图甲,不计粒子的重力。‎ 求该粒子运动到y=h时的速度大小v;‎ 现只改变人射粒子初速度的大小,发现初速度大小不同的粒子虽然运动轨迹(y-x曲线)不同,但具有相同的空间周期性,如图乙所示;同时,这些粒子在y轴方向上的运动(y-t关系)是简谐运动,且都有相同的周期T=。‎ Ⅰ.求粒子在一个周期内,沿轴方向前进的距离s;‎ Ⅱ.当入射粒子的初速度大小为v0时,其y-t图像如图丙所示,求该粒子在y轴方向上做简谐运动的振幅A,并写出y-t的函数表达式。‎ ‎3.(广东)(18分)‎ 如图20所示,以A、B和C、D为断电的两半圆形光滑轨道固定于竖直平面内,一滑板 静止在光滑的地面上,左端紧靠B点,上表面所在平面与两半圆分别相切于B、C,一物块被轻放在水平匀速运动的传送带上E点,运动到A时刚好与传送带速度相同,然后经A沿半圆轨道滑下,再经B滑上滑板。滑板运动到C时被牢固粘连。物块可视为质点,质量为m,滑板质量为M=‎2m,两半圆半径均为R,板长l=6.5R,板右端到C的距离L在Rm2),电荷量均为q。加速电场的电势差为U,离子进入电场时的初速度可以忽略。不计重力,也不考虑离子间的相互作用。‎ ‎(1)求质量为m1的离子进入磁场时的速率v1;‎ ‎(2)当磁感应强度的大小为B时,求两种离子在GA边落点的间距s;‎ ‎(3)在前面的讨论中忽略了狭缝宽度的影响,实际装置中狭缝具有一定宽度。若狭缝过宽,‎ 可能使两束离子在GA边上的落点区域交叠,导致两种离子无法完全分离。‎ 设磁感应强度大小可调,GA边长为定值L,狭缝宽度为d,狭缝右边缘在A处。离子可以从狭缝各处射入磁场,入射方向仍垂直于GA边且 垂直于磁场。为保证上述两种离子能落在GA边上并被完全分离,求狭缝的最大宽度。‎ 解析:(1)动能定理 得 ‎12.(全国)(20分)‎ 装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击。通过对以下简化模型的计算可以粗略说明其原因。‎ 质量为2、厚度为2的钢板静止在水平光滑的桌面上。质量为的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿。现把钢板分成厚度均为、质量为的相同的两块,间隔一段距离平行放置,如图所示。若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度。设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞。不计重力影响。‎ ‎【解析】‎ 设子弹初速度为v0,射入厚度为2d的钢板后,最终钢板和子弹的共同速度为V,由动量守恒得 (2m + m)V = mv0 ①‎ 解得 V = v0‎ 此过程中动能损失为 DE = mv02-×3mV2 ②‎ 解得 DE = mv02‎ 分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1,由动量守恒定律得 mv1 + mV1 = mv0 ③‎ ‎13.(重庆)(18分)如题24图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为m,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L时与第二辆车相碰,两车以共同速度继续运动了距离L 时与第三车相碰,三车以共同速度又运动了距离L时停止。车运动时受到的摩擦阻力恒为车所受重力的k倍,重力加速度为g,若车与车之间仅在碰撞时发生相互作用,碰撞时间很短,忽略空气阻力,求:‎ ‎⑴整个过程中摩擦阻力 所做的总功;‎ ‎⑵人给第一辆车水平冲量的大小;‎ ‎⑶第一次与第二次碰撞系统动能损失之比。‎ ‎⑶由①⑥解得………⑦‎ 由④⑦解得………⑧‎ 第一次碰撞系统动能损失………⑨‎ 由③解得………⑩‎ 由⑤解得………‎ 第二次碰撞系统动能损失……………‎ 第一次与第二次碰撞系统动能损失之比……………‎ ‎ 【2010高考】‎ ‎1. 2010·福建·29(2)如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块。木箱和小木块都具有一定的质量。现使木箱获得一个向右的初速度,则。(填选项前的字母)‎ ‎ A. 小木块和木箱最终都将静止 ‎ B. 小木块最终将相对木箱静止,二者一起向右运动 ‎ C. 小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动 ‎ D. 如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动 答案:B ‎2.2010·北京·20如图,若x轴表示时间,y轴表示位置,则该图像反映了某质点做匀速直线运动时,位置与时间的关系。若令x轴和y轴分别表示其它的物理量,则该图像又可以反映在某种情况下,相应的物理量之间的关系。下列说法中正确的是 A.若x轴表示时间,y轴表示动能,则该图像可以反映某物体受恒定合外力作用做直线运动过程中,物体动能与时间的关系 B.若x轴表示频率,y轴表示动能,则该图像可以反映光电效应中,光电子最大初动能与入射光频率之间的关系 C.若x轴表示时间,y轴表示动量,则该图像可以反映某物在沿运动方向的恒定合外力作用下,物体动量与时间的关系 D.若x轴表示时间,y轴表示感应电动势,则该图像可以反映静置于磁场中的某闭合回路,当磁感应强度随时间均匀增大时,增长合回路的感应电动势与时间的关系 ‎【答案】C ‎【解析】根据动量定理,说明动量和时间是线性关系,纵截距为初动量,C正确。结合得,说明动能和时间的图像是抛物线,A错误。根据光电效应方程,说明最大初动能和时间是线性关系,但纵截距为负值,B错误。当磁感应强度随时间均匀增大时,增长合回路内的磁通量均匀增大,根据法拉第电磁感应定律增长合回路的感应电动势等于磁通量的变化率,是一个定值不 随时间变化,D错误。‎ ‎3. 2010·天津·10如图所示,小球A系在细线的一端,线的另一端固定在O点,O点到水平面的距离为h。物块B质量是小球的5倍,置于粗糙的水平面上且位于O点的正下方,物块与水平面间的动摩擦因数为μ。现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰(碰撞时间极短),反弹后上升至最高点时到水平面的距离为。小球与物块均视为质点,不计空气阻力,重力加速度为g ‎,求物块在水平面上滑行的时间t。‎ 得 ⑦‎ ‎4. 2010·新课标·34(2)(10分)如图所示,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为.使木板与重物以共同的速度向右运动,某时刻木板与墙发生弹性碰撞,碰撞时间极短.求木板从第一次与墙碰撞到再次碰撞所经历的时间.设木板足够长,重物始终在木板上.重力加速度为g.‎ ‎5. 2010·全国卷Ⅱ·25小球A和B的质量分别为mA 和mB 且mA>>mB 在某高度处将A和B先后从静止释放。小球A与水平地面碰撞后向上弹回,在释放处的下方与释放出距离为H的地方恰好与正在下落的小球B发生正幢,设所有碰撞都是弹性的,碰撞事件极短。求小球A、B碰撞后B上升的最大高度。‎ ‎ 连立①④⑤化简得 ‎ ⑥‎ ‎6.2010·北京·24雨滴在穿过云层的过程中,不断与漂浮在云层中的小水珠相遇并结合为一体,其质量逐渐增大。现将上述过程简化为沿竖直方向的一系列碰撞。已知雨滴的初始质量为,初速度为,下降距离后于静止的小水珠碰撞且合并,质量变为。此后每经过同样的距离后,雨滴均与静止的小水珠碰撞且合并,质量依次为、............(设各质量为已知量)。不计空气阻力。‎ (1) 若不计重力,求第次碰撞后雨滴的速度;‎ (2) 若考虑重力的影响,‎ a.求第1次碰撞前、后雨滴的速度和;‎ b.求第n次碰撞后雨滴的动能。‎ ‎【2009高考】‎ 一、选择题 ‎1.(09·全国卷Ⅰ·21)质量为M的物块以速度V运动,与质量为m的静止物块发生正撞,碰撞后两者的动量正好相等,两者质量之比M/m可能为 ( AB )‎ A.2 B‎.3 ‎‎ C.4 D. 5‎ 解析:本题考查动量守恒.根据动量守恒和能量守恒得设碰撞后两者的动量都为P,则总动量为2P,根据,以及能量的关系得,所以AB正确。‎ ‎2.(09·上海·44)自行车的设计蕴含了许多物理知识,利用所学知识完成下表 自行车的设计 目的(从物理知识角度)‎ 车架用铝合金、钛合金代替钢架 减轻车重 车胎变宽 自行车后轮外胎上的花纹 答案:减小压强(提高稳定性);增大摩擦(防止打滑;排水)‎ ‎4.(09·天津·4)如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R,质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,棒在竖直向上的恒力F作用下加速上升的一段时间内,力F做的功与安培力做的功的代数和等于 ( A )‎ A.棒的机械能增加量 B.棒的动能增加量 C.棒的重力势能增加量 D.电阻R上放出的热量 解析:棒受重力G、拉力F和安培力FA的作用。由动能定理: 得即力F做的功与安培力做功的代数和等于机械能的增加量。选A。‎ ‎5.(09·海南物理·7)一物体在外力的作用下从静止开始做直线运动,合外力方向 不变,大小随时间的变化如 图所示。设该物体在和时刻相对于出发点的位移分别是和,速度分别是和,合外力从开始至时刻做的功是,从至时刻做的功是,则 ( AC )‎ A. B.‎ C. D.‎ ‎6.(09·广东理科基础·9)物体在合外力作用下做直线运动的v一t图象如图所示。下列表述正确的是 ( A )‎ A.在0—1s内,合外力做正功 ‎ B.在0—2s内,合外力总是做负功 ‎ C.在1—2s内,合外力不做功 ‎ D.在0—3s内,合外力总是做正功 解析:根据物体的速度图象可知,物体0-1s内做匀加速合外力做正功,A正确;1-3s内做匀减速合外力做负功。根据动能定理0到3s内,1—2s内合外力做功为零。‎ ‎7.(09·宁夏·17) 质量为m的物体静止在光滑水平面上,从t=0时刻开始受到水平力的作用。力的大小F与时间t的关系如图所示,力的方向保持不变,则 ( BD )‎ A.时刻的瞬时功率为 B.时刻的瞬时功率为 C.在到这段时间内,水平力的平均功率为 D. 在到这段时间内,水平力的平均功率为 ‎8.(09·安徽·18)在光滑的绝缘水平面上,有一个正方形的abcd,顶点a、c处分别 固定一个正点电荷,电荷量相等,如图所示。若将一个带负电的粒子置于b点,自由释放,粒子将沿着对角线bd往复运动。粒子从b点运动到d点的过程中 ( D )‎ A. 先作匀加速运动,后作匀减速运动 B. 先从高电势到低电势,后从低电势到高电势 C. 电势能与机械能之和先增大,后减小 a b cc d O D. 电势能先减小,后增大 解析:由于负电荷受到的电场力是变力,加速度是变化的。所以A错;由等量正电荷的电场分布知道,在两电荷连线的中垂线O点的电势最高,所以从b到a,电势是先增大后减小,故B错;由于只有电场力做功,所以只有电势能与动能的相互转化,故电势能与机械能的和守恒,C错;由b到O电场力做正功,电势能减小,由O到d电场力做负功,电势能增加,D对。‎ ‎9.(09·福建·18)如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d,其右端接有阻值 为R的电阻,整个装置处在竖直向上磁感应强度大小为B的匀强磁场中。一质量为m(质量分布均匀)的导体杆ab垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为u。现杆在水平向左、垂直于杆的恒力F作用下从静止开始沿导轨运动距离L时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。设杆接入电路的电阻为r,导轨电阻不计,重力加速度大小为g。则此过程 ( BD )‎ A.杆的速度最大值为 B.流过电阻R的电量为 C.恒力F 做的功与摩擦力做的功之和等于杆动能的变化量 D.恒力F做的功与安倍力做的功之和大于杆动能的变化量 ‎10.(09·浙江自选模块·13)“物理1‎-2”‎模块(1)(本小题共3分,在给出的四个选项中,可能只有一个选项 正确,也可能有多个选项正确,全部选对得3分,选对但不全的得1分,有选错的得0分)‎ 二氧化碳是引起地球温室效应的原因之一,减少二氧化碳的排放是人类追求的目标。下列能源利用时均不会引起二氧化碳排放的是 ( AB )‎ A.氢能、核能、太阳能 B.风能、潮汐能、核能 C.生物质能、风能、氢能 D.太阳能、生物质能、地热能 二、非选择题 ‎11.(09·北京·24)才用多球依次碰撞、碰撞前后速度在同一直线上、且无机械能损失的恶简化力学模型。如图2‎ ‎(1)如图1所示,ABC为一固定在竖直平面内的光滑轨道,BC段水平,AB段与BC段平滑连接。质量为的小球从高位处由静止开始沿轨道下滑,与静止在轨道BC 段上质量为的小球发生碰撞,碰撞后两球两球的运动方向处于同一水平线上,且在碰撞过程中无机械能损失。求碰撞后小球的速度大小;‎ ‎(2)碰撞过程中的能量传递规律在物理学中有着广泛的应用。为了探究这一规律,我们所示,在固定光滑水平轨道上,质量分别为、……的若干个球沿直线静止相间排列,给第1个球初能,从而引起各球的依次碰撞。定义其中第个球经过依次碰撞后获得的动能与之比为第1个球对第个球的动能传递系数。‎ a.求 b.若为确定的已知量。求为何值时,值最大 ‎(2)a由④式,考虑到得 根据动能传递系数的定义,对于1、2两球 ‎ ⑤‎ 同理可得,球m2和球m3碰撞后,动能传递系数k13应为 ‎ ⑥‎ 依次类推,动能传递系数k1n应为 ‎12.(09·天津·10) 如图所示,质量m1=‎0.3 kg 的小车静止在光滑的水平面上,车长L=‎15 m,现有质量m2=‎0.2 kg可视为质点的物块,以水平向右的速度v0=‎2 m/s从左端滑上小车,最后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数=0.5,取g=‎10 m/s2,求 ‎(1)物块在车面上滑行的时间t;‎ ‎(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v′0不超过多少。‎ 答案:(1)0.24s (2)‎5m/s 解析:本题考查摩擦拖动类的动量和能量问题。涉及动量守恒定律、动量定理和功能关系这些物理规律的运用。‎ ‎(1)设物块与小车的共同速度为v,以水平向右为正方向,根据动量守恒定律有 ‎①‎ 设物块与车面间的滑动摩擦力为F,对物块应用动量定理有 ‎②‎ 其中 ③‎ 解得 代入数据得 ④‎ ‎(2)要使物块恰好不从车厢滑出,须物块到车面右端时与小车有共同的速度v′,则 ‎⑤‎ 由功能关系有 ‎⑥‎ 代入数据解得 =‎5m/s 故要使物块不从小车右端滑出,物块滑上小车的速度v0′不能超过‎5m/s。‎ ‎13.(09·山东·38)(2)如图所示,光滑水平面轨道上有三个木块,A、B、C,质量分别为mB=mc=‎2m,mA=m,A、B用细绳连接,中间有一压缩的弹簧 (弹簧与滑块不栓接)。开始时A、B以共同速度v0运动,C静止。某时刻细绳突然断开,A、B被弹开,然后B又与C发生碰撞并粘在一起,最终三滑块速度恰好相同。求B与C碰撞前B的速度。‎ 解析:(2)设共同速度为v,球A和B分开后,B的速度为,由动量守恒定律有,,联立这两式得B和C碰撞前B的速度为。‎ 考点:动量守恒定律 ‎14.(09·安徽·23)如图所示,匀强电场方向沿轴的正方向,场强为。在点有一个静止的中性微粒,由于内部作用,某一时刻突然分裂成两个质量均为的带电微粒,其中电荷量为的微粒1沿轴负方向运动,经过一段时间到达 点。不计重力和分裂后两微粒间的作用。试求 ‎ (1)分裂时两个微粒各自的速度;‎ ‎(2)当微粒1到达(点时,电场力对微粒1做功的瞬间功率;‎ ‎ (3)当微粒1到达(点时,两微粒间的距离。‎ 答案:(1),方向沿y正方向(2)(3)2‎ ‎(2)设微粒1到达(0,-d)点时的速度为v,则电场力做功的瞬时功率为 其中由运动学公式 ‎(0, -d)‎ ‎(d,0)‎ x E y θ vx vy 所以 ‎(3)两微粒的运动具有对称性,如图所示,当微粒1到达(0,-d)点时发生的位移 则当微粒1到达(0,-d)点时,两微粒间的距离为 ‎15.(09·安徽·24)过山车是游乐场中常见的设施。下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径、。一个质量为kg的小球(视为质点),从轨道的左侧A点以的初速度沿轨道向右运动,A、B间距m。小球与水平轨道间的动摩擦因数,圆形轨道是光滑的。假设水平轨道足够长,圆形轨道间不相互重叠。重力加速度取,计算结果保留小数点后一位数字。试求 ‎ (1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;‎ ‎ (2)如果小球恰能通过第二圆形轨道,B、C间距应是多少;‎ ‎ (3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径应满足的条件;小球最终停留点与起点的距离。‎ 答案:(1)10.0N;(2)‎12.5m(3) 当时, ;当时, ‎ 解析:(1)设小于经过第一个圆轨道的最高点时的速度为v1根据动能定理 ‎①‎ ‎ 小球在最高点受到重力mg和轨道对它的作用力F,根据牛顿第二定律 ‎②‎ 由①②得 ③‎ ‎(2)设小球在第二个圆轨道的最高点的速度为v2,由题意 ‎④‎ ‎⑤‎ 由④⑤得 ⑥‎ ‎(3)要保证小球不脱离轨道,可分两种情况进行讨论:‎ 综合I、II,要使小球不脱离轨道,则第三个圆轨道的半径须满足下面的条件 或 ‎ 当时,小球最终焦停留点与起始点A的距离为L′,则 当时,小球最终焦停留点与起始点A的距离为L〞,则 ‎16.(09·福建·21)如图甲,在水平地面上固定一倾角为θ的光滑绝缘斜面,斜面处于电场强度大小为E、方向沿斜面向下的匀强电场中。一劲度系数为k的绝缘轻质弹簧的一端固定在斜面底端,整根弹簧处于自然状态。一质量为m、带电量为q(q>0)的滑块从距离弹簧上端为s0处静止释放,滑块在运动过程中电量保持不变,设滑块与弹簧接触过程没有机械能损失,弹簧始终处在弹性限度内,重力加速度大小为g。‎ ‎(1)求滑块从静止释放到与弹簧上端接触瞬间所经历的时间t1‎ ‎(2)若滑块在沿斜面向下运动的整个过程中最大速度大小为vm,求滑块从静止释放到速度大小为vm过程中弹簧的弹力所做的功W;‎ ‎(3)从滑块静止释放瞬间开始计时,请在乙图中画出滑块在沿斜面向下运动的整个过程中速度与时间关系v-t图象。图中横坐标轴上的t1、t2及t3分别表示滑块第一次与弹簧上端接触、第一次速度达到最大值及第一次速度减为零的时刻,纵坐标轴上的v1为滑块在t1时刻的速度大小,vm是题中所指的物理量。(本小题不要求写出计算过程)‎ 答案:(1); (2); ‎ ‎(3) ‎ 解析:本题考查的是电场中斜面上的弹簧类问题。涉及到匀变速直线运动、运用动能定理处理变力功问题、最大速度问题和运动过程分析。‎ ‎(1)滑块从静止释放到与弹簧刚接触的过程中作初速度为零的匀加速直线运动,设加速度大小为a,则有 qE+mgsin=ma①‎ ‎②‎ 联立①②可得 ‎③‎ ‎17.(09·浙江·24)某校物理兴趣小组决定举行遥控赛车比赛。比赛路径如图所示,赛车从起点A出发,沿水平直线轨道运动L后,由B点进入半径为R的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C点,并能越过壕沟。已知赛车质量m=‎0.1kg,通电后以额定功率P=1.5w工作,进入竖直轨道前受到阻力恒为0.3N,随后在运动中受到的阻力均可不记。图中L=‎10.00m,R=‎0.32m,h=‎1.25m,S=‎1.50m。问:要使赛车完成比赛,电动机至少工作多长时间?(取g=10 )‎ 答案:2.53s ‎18.(09·江苏·14)1932年,劳伦斯和利文斯设计出了回旋加速器。回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R ‎,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B的匀强磁场与盒面垂直。A处粒子源产生的粒子,质量为m、电荷量为+q ,在加速器中被加速,加速电压为U。加速过程中不考虑相对论效应和重力作用。‎ ‎(1)求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比;‎ ‎(2)求粒子从静止开始加速到出口处所需的时间t;‎ ‎(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制。若某一加速器磁感应强度和加速电场频率的最大值分别为Bm、fm,试讨论粒子能获得的最大动能E㎞。‎ ‎19.(09·四川·23)图示为修建高层建筑常用的塔式起重机。在起重机将质量m=5×‎ ‎103 kg的重物竖直吊起的过程中,重物由静止开始向上作匀加速直线运动,加速度a=‎0.2 m/s2,当起重机输出功率达到其允许的最大值时,保持该功率直到重物做vm=‎1.02 m/s的匀速运动。取g=‎10 m/s2,不计额外功。求:‎ (1) 起重机允许输出的最大功率。‎ (2) 重物做匀加速运动所经历的时间和起重机在第2秒末的输出功率。‎ 解析:‎ ‎(1)设起重机允许输出的最大功率为P0,重物达到最大速度时,拉力F0等于重力。‎ P0=F0vm ①‎ P0=mg②‎ 代入数据,有:P0=5.1×104W ③‎ ‎(2)匀加速运动结束时,起重机达到允许输出的最大功率,设此时重物受到的拉力为F,速度为v1,匀加速运动经历时间为t1,有:‎ P0=F0v1 ④‎ F-mg=ma⑤‎ V1=at1 ⑥‎ 由③④⑤⑥,代入数据,得:t1=5 s ⑦‎ T=2 s时,重物处于匀加速运动阶段,设此时速度为v2,输出功率为P,则 v2=at ⑧‎ P=Fv2⑨‎ 由⑤⑧⑨,代入数据,得:P=2.04×104W。‎ ‎20.(09·上海物理·20)质量为5´‎103 kg的汽车在t=0时刻速度v0=‎10m/s,随后以P=6´104 W的额定功率沿平直公路继续前进,经72s达到最大速度,设汽车受恒定阻力,其大小为2.5´103N。求:(1)汽车的最大速度vm;(2)汽车在72s内经过的路程s。‎ 解析:(1)当达到最大速度时,P==Fv=fvm,vm==m/s=‎24m/s ‎(2)从开始到72s时刻依据动能定理得:‎ Pt-fs=mvm2-mv02,解得:s==‎1252m。‎ ‎21.(09·上海物理·23)(12分)如图,质量均为m的两个小球A、B固定在弯成120°角的绝缘轻杆两端,OA和OB的长度均为l,可绕过O点且与纸面垂直的水平轴无摩擦转动,空气阻力不计。设A球带正电,B球带负电,电量均为q,处在竖直向下的匀强电场中。开始时,杆OB与竖直方向的夹角q0=60°,由静止释放,摆动到q=90°的位置时,系统处于平衡状态,求: ‎ ‎(1)匀强电场的场强大小E;‎ ‎(2)系统由初位置运动到平衡位置,重力做的功Wg和静电力做的功We;‎ ‎(3)B球在摆动到平衡位置时速度的大小v。‎ 解析:(1)力矩平衡时:(mg-qE)lsin90°=(mg+qE)lsin(120°-90°),‎ 即mg-qE=(mg+qE),得:E=;‎ ‎(2)重力做功:Wg=mgl(cos30°-cos60°)-mglcos60°=(-1)mgl,‎ 静电力做功:We=qEl(cos30°-cos60°)+qElcos60°=mgl,‎ ‎(3)小球动能改变量DEk=mv2=Wg+We=(-1)mgl,‎ 得小球的速度:v==。‎ ‎22.(09·四川·25) 如图所示,轻弹簧一端连于固定点O,可在竖直平面内自由转动,另一端连接一带电小球P,其质量m=2×10‎-2 kg,电荷量q=‎0.2 C.将弹簧拉至水平后,以初速度V0=‎20 m/s竖直向下射出小球P,小球P到达O点的正下方O1点时速度恰好水平,其大小V=‎15 m/s.若O、O1相距R=‎1.5 m,小球P在O1点与另一由细绳悬挂的、不带电的、质量M=1.6×10‎-1 kg的静止绝缘小球N相碰。碰后瞬间,小球P脱离弹簧,小球N脱离细绳,同时在空间加上竖直向上的匀强电场E和垂直于纸面的磁感应强度B=1T的弱强磁场。此后,小球P在竖直平面内做半径r=‎0.5 m的圆周运动。小球P、N均可视为质点,小球P的电荷量保持不变,不计空气阻力,取g=‎10 m/s2。那么,‎ 解析:‎ ‎(1)设弹簧的弹力做功为W,有:                    ‎ ‎                ①‎ 代入数据,得:W=J                 ②‎ ‎(2)由题给条件知,N碰后作平抛运动,P所受电场力和重力平衡,P带正电荷。设P、N碰后的速度大小分别为v1和V,并令水平向右为正方向,有: ③‎ 而:                  ④‎ 若P、N碰后速度同向时,计算可得V