- 1.45 MB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1. (新课标Ⅰ理数)设圆的圆心为,直线过点且与轴不重合,交圆于两点,过作的平行线交于点.
(I)证明为定值,并写出点的轨迹方程;
(II)设点的轨迹为曲线,直线交于两点,过且与垂直的直线与圆交于两点,求四边形面积的取值范围.
2. (新课标Ⅱ理数)已知椭圆E:的焦点在轴上,是的左顶点,斜率为的直线交E于两点,点在上,.
(I)当,时,求△的面积;
(II)当时,求的取值范围.
1. (新课标Ⅲ理数)已知抛物线 的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.
(I)若在线段上,是的中点,证明;
(II)若的面积是的面积的两倍,求中点的轨迹方程.
2. (2016年北京理数)已知椭圆C: 的离心率为 ,
的面积为1.
(I)求椭圆的方程;
(II)设是椭圆上一点,直线与轴交于点,直线与轴交于点。
求证:为定值。
1. (2016年江苏理数)如图,在平面直角坐标系中,已知以为圆心的圆及其上一点
(1) 设圆与轴相切,与圆外切,且圆心在直线上,求圆的标准方程;
(2) 设平行于的直线与圆相交于两点,且,求直线的方程;
(3) 设点满足:存在圆上的两点和,使得,求实数的取值范围。
1. (2016年山东理数)平面直角坐标系中,椭圆C: 的离心率是,抛物线E:的焦点是的一个顶点。
(I)求椭圆的方程;
(II)设是上的动点,且位于第一象限,在点处的切线与交与不同的两点线段的中点为,直线与过且垂直于轴的直线交于点.
(i)求证:点在定直线上;
(ii)直线与轴交于点,记的面积为,的面积为,求的最大值及取得最大值时点的坐标.
1. (2016年上海理数)双曲线的左、右焦点分别为,直线过且与双曲线交于两点。
(1)若的倾斜角为,是等边三角形,求双曲线的渐近线方程;
(2)设,若的斜率存在,且,求的斜率.
2. (2016年四川理数)已知椭圆的两个焦点与短轴的一个端点是直角三角形的个顶点,直线与椭圆有且只有一个公共点
(I)求椭圆的方程及点的坐标;
(II)设是坐标原点,直线平行于与椭圆交于不同的两点且与直线交于点证明:存在常数,使得,并求的值.
1. (2016年天津理数)设椭圆的右焦点为,右顶点为.已知,其中为原点,为椭圆的离心率. 学.科.网
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点.若,且≤,求直线的斜率的取值范
围.
2. (2016年浙江理数)如图,设椭圆
(Ⅰ)求直线被椭圆截得到的弦长(用表示)
(Ⅱ)若任意以点为圆心的圆与椭圆至多有三个公共点,求椭圆离心率的取值范围.
答案
1. 因为,,故,
所以,故.
又圆的标准方程为,从而,所以.
由题设得,,,由椭圆定义可得点的轨迹方程为:
().
(Ⅱ)当与轴不垂直时,设的方程为,,.
由得.
则,.
所以.
过点且与垂直的直线:,到的距离为,所以
.故四边形的面积
.
可得当与轴不垂直时,四边形面积的取值范围为.
当与轴垂直时,其方程为,,,四边形的面积为12.
综上,四边形面积的取值范围为.
1. 【答案】(Ⅰ);(Ⅱ).
【解析】
试题分析:(Ⅰ)先求直线的方程,再求点的纵坐标,最后求的面积;(Ⅱ)设,,将直线的方程与椭圆方程组成方程组,消去,用表示,从而表示,同理用表示,再由求.
试题解析:(I)设,则由题意知,当时,的方程为,.
由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为.
将代入得.解得或,所以.
因此的面积.
(II)由题意,,.
将直线的方程代入得.
由得,故.
由题设,直线的方程为,故同理可得,
由得,即.
当时上式不成立,
因此.等价于,
即.由此得,或,解得.
因此的取值范围是.
1. 解:由题设.设,则,且
.
记过两点的直线为,则的方程为. .....3分
(Ⅰ)由于在线段上,故.
记的斜率为,的斜率为,则
.
所以. ......5分
(Ⅱ)设与轴的交点为,
则.
由题设可得,所以(舍去),.
设满足条件的的中点为.
当与轴不垂直时,由可得.
而,所以.
当与轴垂直时,与重合.所以,所求轨迹方程为. ....12分
2.
解:(Ⅰ)由题意得解得.
所以椭圆的方程为.
(Ⅱ)由(Ⅰ)知,,
设,则.
当时,直线的方程为.
令,得.从而.
直线的方程为.
令,得.从而.
所以
.
当时,,
所以.
综上,为定值.
1. 解:圆M的标准方程为,所以圆心M(6,7),半径为5,.
(1)由圆心N在直线x=6上,可设.因为圆N与x轴相切,与圆M外切,
所以,于是圆N的半径为,从而,解得.
因此,圆N的标准方程为.
(2)因为直线OA,所以直线l的斜率为.
设直线l的方程为y=2x+m,即2x-y+m=0,
则圆心M到直线l的距离
因为
而
所以,解得m=5或m=-15.
故直线l的方程为2x-y+5=0或2x-y-15=0.
(3)设
因为,所以 ……①
因为点Q在圆M上,所以 …….②
将①代入②,得.
于是点既在圆M上,又在圆上,
从而圆与圆有公共点,
所以 解得.
因此,实数t的取值范围是.
1. (Ⅰ)由题意知,可得:.
因为抛物线的焦点为,所以,
所以椭圆C的方程为.
(Ⅱ)(i)设,由可得,
所以直线的斜率为,
因此直线的方程为,即.
设,联立方程
得,
由,得
且,
因此,
将其代入得,
因为,所以直线方程为.
联立方程,得点的纵坐标为,
即点在定直线上.
(ii)由(i)知直线方程为,
令得,所以,
又,
所以,
,
所以,
令,则,
当,即时,取得最大值,此时,满足,
所以点的坐标为,因此的最大值为,此时点的坐标为.
1. 由题意,,,,
因为是等边三角形,所以,
即,解得.
故双曲线的渐近线方程为.
(2)由已知,,.
设,,直线.显然.
由,得.
因为与双曲线交于两点,所以,且.
设的中点为.
由即,知,故.
而,,,
所以,得,故的斜率为.
1. (I)由已知,,则椭圆E的方程为.
有方程组 得.①
方程①的判别式为,由,得,
此时方程①的解为,
所以椭圆E的方程为.
点T坐标为(2,1).
(II)由已知可设直线 的方程为,
有方程组 可得
所以P点坐标为( ),.
设点A,B的坐标分别为 .
由方程组 可得.②
方程②的判别式为,由,解得.
由②得.
所以 ,
同理,
所以
.
故存在常数,使得.
1. 【答案】(Ⅰ)(Ⅱ)
【解析】
试题分析:(Ⅰ)求椭圆标准方程,只需确定量,由,得,再利用,可解得,(Ⅱ)先化简条件:,即M再OA中垂线上,,再利用直线与椭圆位置关系,联立方程组求;利用两直线方程组求H,最后根据,列等量关系解出直线斜率.取值范围
试题解析:(1)解:设,由,即,可得,又,所以,因此,所以椭圆的方程为.
(2)(Ⅱ)解:设直线的斜率为(),则直线的方程为.设
,由方程组,消去,整理得.
解得,或,由题意得,从而.
由(Ⅰ)知,,设,有,.由,得,所以,解得.因此直线的方程为.
设,由方程组消去,解得.在中,,即,化简得,即,解得或.
所以,直线的斜率的取值范围为.
1. (I)设直线被椭圆截得的线段为,由得
,
故
,.
因此
.
(II)假设圆与椭圆的公共点有个,由对称性可设轴左侧的椭圆上有两个不同的点,,满足
.
记直线,的斜率分别为,,且,,.
由(I)知,
,,
故
,
所以.
由于,,得
,
因此
, ①
因为①式关于,的方程有解的充要条件是
,
所以
.
因此,任意以点为圆心的圆与椭圆至多有个公共点的充要条件为
,
由得,所求离心率的取值范围为.