- 676.00 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1990年全国高考数学(文科 )试题及其解析
考生注意:本试题共三道大题(26个小题),满分120分.
一.选择题(共15小题,每小题3分,满分45分. 每小题都给出代号为A,B,C,D的四个结论,其中只有一个结论是正确的,把你认为正确结论的代号写在题后的圆括号内.每一个小题选对得3分,不选或选错一律得0分)
A. 甲是乙的充分条件,但不是乙的必要条件.
B. 甲是乙的必要条件,但不是乙的充分条件.
C. 甲是乙的充要条件.
D. 甲不是乙的充分条件,也不是乙的必要条件.
二、填空题: (共5小题,每小题3分,满分15分.把答案填在题中横线上.)
三、解答题. (共6小题,满分60分)
21. (满分10分)有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数
与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.
22.(满分8分)
23. (满分8分)如图,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC.DE垂直平分SC,且分别交AC、SC于D、E.又SA=AB,SB=BC.求以BD为棱,以BDE与BDC为面的二面角的度数.
24. (满分10分)已知a>0,a≠1,解不等式loga(4+3x-x2)-loga(2x-1)>loga2.
25. (满分12分)设a≥0,在复数集C中解方程z2+2│z│=a.
26. (满分12分)
参考答案及其解析
一、选择题:本题考查基本知识和基本运算.
(1)A (2)C (3)D (4)B (5)D
(6)C (7)A (8)B (9)A (10)C
(11)B (12)D (13)A (14)C (15)B
二、填空题:本题考查基本知识和基本运算.
三、解答题.
(21)本小题考查等差数列、等比数列的概念和运用方程(组)解决问题的能力.
依题意有
由②式得 d=12-2a. ③
整理得 a2-13a+36=0.
解得 a1=4, a2=9.
代入③式得 d1=4, d2=-6.
从而得所求四个数为0,4,8,16或15,9,3,1.
解法二:设四个数依次为x,y,12-y,16-x.
依题意,有
由①式得 x=3y-12. ③
将③式代入②式得 y(16-3y+12)=(12-y)2,
整理得 y2-13y+36=0.
解得 y1=4,y2=9.
代入③式得 x1=0,x2=15.
从而得所求四个数为0,4,8,16或15,9,3,1.
(22)本小题考查三角公式以及三角函数式的恒等变形和运算能力.
解法一:由已知得
两式相除得
解法二:如图,不妨设0≤α≤β<2π,且点A的坐标是(cosα,sinα),点B的坐标是(cosβ,sinβ),则点A,B在单位圆x2+y2=1上.连结AB,若C是AB的中点,由题设知点C
连结OC,于是OC⊥AB,若设点D的坐标是(1,0),再连结OA,OB,则有
解法三:由题设得 4(sinα+sinβ)=3(cosα+cosβ).
将②式代入①式,可得 sin(α-j)=sin(j-β).
于是 α-j=(2k+1)π-(j-β)(k∈Z),
或 α-j=2kπ+(j-β)(k∈Z).
若 α-j=(2k+1)π-(j-β)(k∈Z),则α=β+(2k+1)π(k∈Z).
于是 sinα=-sinβ,即sinα+sinβ=0.
由此可知 α-j=2kπ+(j-β)(k∈Z).
即 α+β=2j+2kπ(k∈Z).
(23)本小题考查直线和平面,直线和直线的位置关系,二面角等基本知识,以及逻辑推理能力和空间想象能力.
解法一:由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE.
又已知 SC⊥DE,BE∩DE=E,
∴ SC⊥面BDE,
∴ SC⊥BD.
又 ∵SA⊥底面ABC,BD在底面ABC上,∴SA⊥BD.
而 SC∩SA=S,∴BD⊥面SAC.
∵ DE=面SAC∩面BDE,DC=面SAC∩面BDC,
∴ BD⊥DE,BD⊥DC.
∴ ∠EDC是所求的二面角的平面角.
∵ SA⊥底面ABC,∴SA⊥AB,SA⊥AC.
又已知DE⊥SC,所以∠EDC=60°,即所求的二面角等于60°.
解法二:由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE.
又已知 SC⊥DE,BE∩DE=E.
∴ SC⊥面BDE,
∴ SC⊥BD.
由于SA⊥底面ABC,且A是垂足,所以AC是SC在平面ABC上的射影.由三垂线定理的逆定理得BD⊥AC;又因E∈SC,AC是SC在平面ABC上的射影,所以E在平面ABC上的射影在AC上,由于D∈AC,所以DE在平面ABC上的射影在AC上,根据三垂线定理又得BD⊥DE.
∵DE面BDE,DC面BDC,
∴∠EDC是所求的二面角的平面角.
以下同解法一.
(24)本小题考查对数,不等式的基本知识及运算能力.
解:原不等式可化为
loga(4+3x-x2)>loga2(2x-1). ①
当01时,①式等价于
(25)本小题考查复数与解方程等基本知识以及综合分析能力.
解法一:设z=x+yi,代入原方程得
于是原方程等价于方程组
由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数或为纯虚数.下面分别加以讨论.
情形1. 若y=0,即求原方程的实数解z=x.此时,①式化为
x2+2│x│=a. ③
(Ⅰ)令x>0,方程③变为x2+2x=a. ④
由此可知:当a=0时,方程④无正根;
(Ⅱ)令x<0,方程③变为x2-2x=a. ⑤
由此可知:当a=0时,方程⑤无负根;
(Ⅲ)令x=0,方程③变为0=a. ⑥
由此可知:当a=0时,方程⑥有零解x=0;
当a>0时,方程⑥无零解.
所以,原方程的实数解是:
当a=0时,z=0;
情形2. 若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为
-y2+2│y│=a. ⑦
(Ⅰ)令y>0,方程⑦变为-y2+2y=a,即(y-1)2=1-a. ⑧
由此可知:当a>1时,方程⑧无实根.
从而, 当a=0时,方程⑧有正根 y=2;
(Ⅱ)令y<0,方程⑦变为-y2-2y=a,即(y+1)2=1-a. ⑨
由此可知:当a>1时,方程⑨无实根.
从而, 当a=0时,方程⑨有负根 y=-2;
所以,原方程的纯虚数解是:
当a=0时,z=±2i;
而当a>1时,原方程无纯虚数解.
解法二:设z=x+yi,代入原方程得
于是原方程等价于方程组
由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数,或为纯虚数.下面分别加以讨论.
情形1. 若y=0,即求原方程的实数解z=x.此时,①式化为
x2+2│x│=a.
情形2. 若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为
-y2+2│y│=a.
当a=0时,因y≠0,解方程④得│y│=2,
即当a=0时,原方程的纯虚数解是z=±2i.
即当01时,方程④无实根,所以这时原方程无纯虚数解.
解法三:因为z2=-2│z│+a是实数,所以若原方程有解,则其解或为实数,或为纯虚数,即z=x或z=yi(y≠0).
情形1. 若z=x.以下同解法一或解法二中的情形1.
情形2. 若z=yi(y≠0).以下同解法一或解法二中的情形2.
解法四:设z=r(cosθ+isinθ),其中r≥0,0≤θ<2π.代入原方程得
r2cos2θ+2r+ir2sin2θ=a.
于是原方程等价于方程组
情形1. 若r=0.①式变成
0=a. ③
由此可知:当a=0时,r=0是方程③的解.
当a>0时,方程③无解.
所以, 当a=0时,原方程有解z=0;
当a>0时,原方程无零解.
(Ⅰ)当k=0,2时,对应的复数是z=±r.因cos2θ=1,故①式化为
r2+2r=a. ④
由此可知:当a=0时,方程④无正根;
(Ⅱ)当k=1,3时,对应的复数是z=±ri.因cos2θ=-1,故①式化为
-r2+2r=a,即(r-1)2=1-a, ⑤
由此可知:当a>1时,方程⑤无实根,从而无正根;
从而, 当a=0时,方程⑤有正根 r=2;
所以, 当a=o时,原方程有解z=±2i;
当01时,原方程无纯虚数解.
(26)本小题考查椭圆的性质,距离公式,最大值知识以及分析问题的能力.
解法一:根据题设条件,可取椭圆的参数方程是
其中a>b>0待定,0≤θ<2π.
设椭圆上的点(x,y)到点P的距离为d,则
大值,由题设得
,
因此必有
,
由此可得 b=1,a=2.
所求椭圆的参数方程是
.
解法二:设所求椭圆的直角坐标方程是
其中a>b>0待定.
,
设椭圆上的点(x,y)到点P的距离为d,则
其中 -byb.
由此得
,
由此可得 b=1,a=2.
所求椭圆的直角坐标方程是
相关文档
- 备战2013高考数学客观题强化训练 2021-05-14101页
- 2013高考英语一轮复习方略 素能提2021-05-1411页
- 课堂新坐标2014高考数学文一轮总复2021-05-144页
- 高二生物复习——光合作用与呼吸作2021-05-149页
- 高考上海卷语文试题及答案解析作文2021-05-1411页
- 2016高考数学理海南word版含答案2021-05-145页
- 高考语文小说阅读核心要点突破2021-05-1413页
- 浙江高考化学试题与答案精校word2021-05-146页
- 全国高考文科综合湖南卷2021-05-1412页
- 2020年高考英语模拟卷及答案解析(六2021-05-1433页