- 1.80 MB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2012年高考真题理科数学解析分类汇编3 导数
一、选择题
1.【2012高考重庆理8】设函数在R上可导,其导函数为,且函数的图像如题(8)图所示,则下列结论中一定成立的是
(A)函数有极大值和极小值
(B)函数有极大值和极小值
(C)函数有极大值和极小值
(D)函数有极大值和极小值
【答案】D
【解析】由图象可知当时,,所以此时,函数递增.当时,,所以此时,函数递减.当时,,所以此时,函数递减.当时,,所以此时,函数递增.所以函数有极大值,极小值,选D.
2.【2012高考新课标理12】设点在曲线上,点在曲线上,则最小值为( )
【答案】B
【解析】函数与函数互为反函数,图象关于对称
函数上的点到直线的距离为
设函数
由图象关于对称得:最小值为,
3.【2012高考陕西理7】设函数,则( )
A. 为的极大值点 B.为的极小值点
C. 为的极大值点 D. 为的极小值点[学
【答案】D.
【解析】,令,则,当时,当时,所以为极小值点,故选D.
4.【2012高考辽宁理12】若,则下列不等式恒成立的是
(A) (B)
(C) (D)
【答案】C
【命题意图】本题主要考查不等式恒成立问题,是难题.
【解析】法1:验证A,当,故排除A;验证B,当,
,而,故排除B;
验证C,令,显然恒成立
所以当,,所以,为增函数,所以
,恒成立,故选C;验证D,令
,令,解得,所以当时,,显然不恒成立,故选C.
法2:设,则
所以所以当时,
同理即,故选C
【点评】
本题主要考查导数公式,以及利用导数,通过函数的单调性与最值来证明不等式,考查转化思想、推理论证能力、以及运算能力,难度较大。
5.【2012高考湖北理3】已知二次函数的图象如图所示,则它与轴所围图形的面积为
A. B.
C. D.
【答案】B
考点分析:本题考察利用定积分求面积.
【解析】根据图像可得: ,再由定积分的几何意义,可求得面积为.
6.【2012高考全国卷理10】已知函数y=x²-3x+c的图像与x恰有两个公共点,则c=
(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1
【答案】A
【命题意图】本试题主要考查了导数在研究三次函数中的极值的运用。要是函数图像与轴有两个不同的交点,则需要满足极佳中一个为零即可。
【解析】若函数的图象与轴恰有两个公共点,则说明函数的两个极值中有一个为0,函数的导数为,令,解得,可知当极大值为,极小值为.由,解得,由,解得,所以或,选A.
二、填空题
7.【2012高考浙江理16】定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=_______。
【答案】
【解析】曲线C2:x2+(y+4)2=2到直线l:y=x的距离为,
曲线C1:y=x2+a对应函数的导数为,令得,所以C1:y=x2+a上的点为,点到到直线l:y=x的距离应为,所以,解得或(舍去)。
8.【2012高考江西理11】计算定积分___________。
【答案】
【命题立意】本题考查有关多项式函数,三角函数定积分的应用.
【解析】。
9.【2012高考山东理15】设.若曲线与直线所围成封闭图形的面积为,则______.
【答案】
【解析】由已知得,所以,所以。
10.【2012高考广东理12】曲线y=x3-x+3在点(1,3)处的切线方程为 .
【答案】
【解析】,当时,,此时,故切线方程为,即。
11.【2012高考上海理13】已知函数的图象是折线段,其中、、,函数()的图象与轴围成的图形的面积为 。
【答案】
【解析】当,线段的方程为,当时。线段方程为,整理得,即函数,所以
,函数与轴围成的图形面积为。
【点评】本题主要考查函数的图象与性质,函数的解析式的求解方法、定积分在求解平面图形中的运用.突出体现数形结合思想,本题综合性较强,需要较强的分析问题和解决问题的能力,在以后的练习中加强这方面的训练,本题属于中高档试题,难度较大.
12.【2012高考陕西理14】设函数,是由轴和曲线及该曲线在点处的切线所围成的封闭区域,则在上的最大值为 .
【答案】2.
【解析】函数在点处的切线为,即.所以D表示的平面区域如图当目标函数直线经过点M时有最大值,最大值为.
三、解答题
13.【2012高考广东理21】(本小题满分14分)
设a<1,集合,,。
(1)求集合D(用区间表示);
(2)求函数在D内的极值点.
【答案】本题是一个综合性问题,考查集合与导数的相关知识,考查了学生综合解决问题的能力,难度较大.
【解析】(1)对于方程
判别式
因为,所以
① 当时,,此时,所以;
② 当时,,此时,所以;
当时,,设方程的两根为且,则
,
③ 当时,,,所以
此时,
④ 当时,,所以
此时,
(2),
所以函数在区间上为减函数,在区间和上为增函数
①是极点
②是极点
得:时,函数无极值点,时,函数极值点为,
时,函数极值点为与
14.【2012高考安徽理19】(本小题满分13分)
设。
(I)求在上的最小值;
(II)设曲线在点的切线方程为;求的值。
【答案】本题考查函数、导数的基础知识,运用导数研究函数性质等基本方法,考查分类讨论思想,代数恒等变形能力和综合运用数学知识分析问题解决问题的能力。
【解析】(I)设;则,
①当时,在上是增函数,
得:当时,的最小值为。
②当时,,
当且仅当时,的最小值为。
(II),
由题意得:。
15.【2012高考福建理20】(本小题满分14分)已知函数f(x)=ex+ax2-ex,a∈R.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;
(Ⅱ)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.
【答案】本题主要考查函数导数的应用、二次函数的性质、函数零点的存在性定理等基础知识,考查推理论证能力、基本运算能力、抽象概括能力,以及分类与整合思想、数形结合思想、化归与转化思想.
解答:
(Ⅰ)
由题意得:
得:函数的单调递增区间为,单调递减区间为
(Ⅱ)设; 则过切点的切线方程为
令;则
切线与曲线只有一个公共点只有一个根
,且
(1)当时,
得:当且仅当时,
由的任意性,不符合条件(lby lfx)
(2)当时,令
①当时,
当且仅当时,在上单调递增
只有一个根
②当时,
得:,又
存在两个数使,
得:又
存在使,与条件不符。
③当时,同理可证,与条件不符
从上得:当时,存在唯一的点使该点处的切线与曲线只有一个公共点
16.【2012高考全国卷理20】(本小题满分12分)(注意:在试题卷上作答无效)
设函数f(x)=ax+cosx,x∈[0,π].
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设f(x)≤1+sinx,求a的取值范围.
【命题意图】本试题考查了导数在研究函数中的运用。第一就是函数中有三角函数,要利用三角函数的有界性,求解单调区间。另外就是运用导数证明不等式问题的构造函数思想的运用。
解:。
(Ⅰ)因为,所以。
当时,,在上为单调递增函数;
当时,,在上为单调递减函数;
当时,由得,
由得或;
由得。
所以当时在和上为为单调递增函数;在上为单调递减函数。[来源:Zxxk.Com]
(Ⅱ)因为
当时,恒成立
当时,
令,则
又令,则
则当时,,故,单调递减
当时,,故,单调递增
所以在时有最小值,而
,
综上可知时,,故在区间单调递
所以
故所求的取值范围为。[来源:Z。xx。k.Com]
另解:由恒成立可得
令,则
当时,,当时,[来源:学科网]
又,所以,即
故当时,有(lbylf x)
①当时,,,所以
②当时,
综上可知故所求的取值范围为。
【点评】试题分为两问,题词面比较简单,给出的函数比较新颖,因为里面还有三角函数,这一点对于同学们来说有点难度,不同于平时的练习题,相对来说做得比较少。但是解决的关键还是要看导数的符号,求解单调区间。第二问中,运用构造函数的思想,证明不等式,一直以来是个难点,那么这类问题的关键是找到合适的函数,运用导数证明最值大于或者小于零的问题得到解决。
17.【2012高考北京理18】(本小题共13分)
已知函数,.
(1)若曲线与曲线在它们的交点处具有公共切线,求,的值;
(2)当时,求函数的单调区间,并求其在区间上的最大值.
解:(1)由为公共切点可得:
,则,,
,则,,
①
又,,
,即,代入①式可得:.
(2),设
则,令,解得:,;
,,
原函数在单调递增,在单调递减,在上单调递增
①若,即时,最大值为;
②若,即时,最大值为
③若时,即时,最大值为.
综上所述:
当时,最大值为;当时,最大值为.
18.【2012高考新课标理21】(本小题满分12分)
已知函数满足满足;
(1)求的解析式及单调区间;
(2)若,求的最大值.
【答案】(1)
令得:
得:
在上单调递增
得:的解析式为
且单调递增区间为,单调递减区间为
(2)得
①当时,在上单调递增
时,与矛盾
②当时,
得:当时,
令;则
当时,
当时,的最大值为
19.【2012高考天津理20】本小题满分14分)
已知函数的最小值为0,其中
(Ⅰ)求的值;
(Ⅱ)若对任意的有≤成立,求实数的最小值;
(Ⅲ)证明().
【答案】
(1)函数的定义域为
得:时,
(2)设
则在上恒成立(*)
①当时,与(*)矛盾
②当时,符合(*)
得:实数的最小值为
(3)由(2)得:对任意的值恒成立
取:
当时, 得:
当时,
得:。
【点评】试题分为三问,题面比较简单,给出的函数比较常规,因此入手对于同学们来说没有难度,第二问中,解含参数的不等式时,要注意题中参数的讨论所有的限制条件,从而做到不重不漏;第三问中,证明不等式,应借助于导数证不等式的方法进行.
20.【2012高考江苏18】(16分)若函数在处取得极大值或极小值,则称为函数的极值点。
已知是实数,1和是函数的两个极值点.
(1)求和的值;
(2)设函数的导函数,求的极值点;
(3)设,其中,求函数的零点个数.
【答案】解:(1)由,得。
∵1和是函数的两个极值点,
∴ ,,解得。
(2)∵ 由(1)得, ,
∴,解得。
∵当时,;当时,,
∴是的极值点。
∵当或时,,∴ 不是的极值点。
∴的极值点是-2。
(3)令,则。
先讨论关于 的方程 根的情况:
当时,由(2 )可知,的两个不同的根为I 和一2 ,注意到是奇函数,∴的两个不同的根为一和2。
当时,∵, ,
∴一2 , -1,1 ,2 都不是的根。
由(1)知。
① 当时, ,于是是单调增函数,从而。
此时在无实根。
② 当时.,于是是单调增函数。
又∵,,的图象不间断,
∴ 在(1 , 2 )内有唯一实根。
同理,在(一2 ,一I )内有唯一实根。
③ 当时,,于是是单调减两数。
又∵, ,的图象不间断,
∴在(一1,1 )内有唯一实根。
因此,当时,有两个不同的根满足;当 时
有三个不同的根,满足。
现考虑函数的零点:
( i )当时,有两个根,满足。
而有三个不同的根,有两个不同的根,故有5 个零点。
( 11 )当时,有三个不同的根,满足。
而有三个不同的根,故有9 个零点。
综上所述,当时,函数有5 个零点;当时,函数有9 个零点。
【考点】函数的概念和性质,导数的应用。
【解析】(1)求出的导数,根据1和是函数的两个极值点代入列方程组求解即可。
(2)由(1)得,,求出,令,求解讨论即可。
(3)比较复杂,先分和讨论关于 的方程 根的情况;再考虑函数的零点。
21.【2012高考辽宁理21】本小题满分12分)
设,曲线与
直线在(0,0)点相切。
(Ⅰ)求的值。
(Ⅱ)证明:当时,。
【命题意图】本题主要考查函数的切线及恒成立问题,考查运算求解能力,是难题.
【解析】(1)由的图像过点,代入得
由在处的切线斜率为,又,得…3分
(2)(证法一)由均值不等式,当时,,故
记,则
,令,则当时,
(lby lfx)
因此在内是减函数,又由,得,所以
因此在内是减函数,又由,得,
于是当时, …12分
(证法二)
由(1)知,由均值不等式,当时,,故
令,则,故,即,由此得,当时,,记,则当时,
因此在内是减函数,又由,得,即
【点评】本题综合考查导数的概念、几何意义、导数在判断函数单调性与最值中的运用。本题容易忽略函数的定义域,根据条件曲线与直线在(0,0)点相切,求出的值,然后,利用函数的单调性或者均值不等式证明即可。从近几年的高考命题趋势看,此类型题目几乎年年都有涉及,因此,在平时要加强训练。本题属于中档题。
22.【2012高考重庆理16】(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.)
设其中,曲线在点处的切线垂直于轴.
(Ⅰ) 求的值;
(Ⅱ)求函数的极值.
解:(1)因,故
由于曲线在点处的切线垂直于轴,故该切线斜率为0,即,
从而,解得
(2)由(1)知,
令,解得(因不在定义域内,舍去),
当时,,故在上为减函数;
当时,,故在上为增函数;
故在处取得极小值。
23.【2012高考浙江理22】(本小题满分14分)已知a>0,bR,函数.
(Ⅰ)证明:当0≤x≤1时,
(ⅰ)函数的最大值为|2a-b|﹢a;
(ⅱ) +|2a-b|﹢a≥0;
(Ⅱ) 若﹣1≤≤1对x[0,1]恒成立,求a+b的取值范围.
【命题立意】本题主要考查不等式、利用导数研究函数的单调性等性质、线性规划等知识点综合运用能力,同时考查抽象概括、推理论证能力。
【答案】本题主要考察不等式,导数,单调性,
(Ⅰ)(ⅰ).
当b≤0时,>0在0≤x≤1上恒成立,
此时的最大值为:=|2a-b|﹢a;
当b>0时,在0≤x≤1上的正负性不能判断,
此时的最大值为:
=|2a-b|﹢a;
综上所述:函数在0≤x≤1上的最大值为|2a-b|﹢a;
(ⅱ) 要证+|2a-b|﹢a≥0,即证=﹣≤|2a-b|﹢a.
亦即证在0≤x≤1上的最大值小于(或等于)|2a-b|﹢a,
∵,
∴令.
当b≤0时,<0在0≤x≤1上恒成立,
此时的最大值为:=|2a-b|﹢a;
当b<0时,在0≤x≤1上的正负性不能判断,
≤|2a-b|﹢a;
综上所述:函数在0≤x≤1上的最大值小于(或等于)|2a-b|﹢a.
即+|2a-b|﹢a≥0在0≤x≤1上恒成立.
(Ⅱ)由(Ⅰ)知:函数在0≤x≤1上的最大值为|2a-b|﹢a,
且函数在0≤x≤1上的最小值比﹣(|2a-b|﹢a)要大.
∵﹣1≤≤1对x[0,1]恒成立,
∴|2a-b|﹢a≤1.
取b为纵轴,a为横轴.
则可行域为:和,目标函数为z=a+b.
作图如下:
由图易得:当目标函数为z=a+b过P(1,2)时,有.
∴所求a+b的取值范围为:.
24.【2012高考山东理22】(本小题满分13分)
已知函数(为常数,是自然对数的底数),曲线在点处的切线与轴平行.
(Ⅰ)求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,其中为的导函数.证明:对任意.
解:
(Ⅰ),依题意,为所求.
(Ⅱ)此时
记,,所以在,单减,又,
所以,当时,,,单增;
当 时,,,单减.
所以,增区间为(0,1);
减区间为(1,.
(Ⅲ),先研究,再研究.
① 记,,令,得,
当,时,,单增;
当,时,,单减 .
所以,,即.
② 记,,所以在,单减,
所以,,即
综①、②知,.
25.【2012高考真题湖南理22】(本小题满分13分)
已知函数=,其中a≠0.
(1) 若对一切x∈R,≥1恒成立,求a的取值集合.
(2)在函数的图像上取定两点,,记直线AB的斜率为K,问:是否存在x0∈(x1,x2),使成立?若存在,求的取值范围;若不存在,请说明理由.
【答案】(Ⅰ)若,则对一切,,这与题设矛盾,又,
故.
而令
当时,单调递减;当时,单调递增,故当时,取最小值
于是对一切恒成立,当且仅当
. ①
令则
当时,单调递增;当时,单调递减.
故当时,取最大值.因此,当且仅当即时,①式成立.
综上所述,的取值集合为.
(Ⅱ)由题意知,
令则
令,则.
当时,单调递减;当时,单调递增.
故当,即
从而,又
所以
因为函数在区间上的图像是连续不断的一条曲线,所以存在使单调递增,故这样的是唯一的,且.故当且仅当时, .
综上所述,存在使成立.且的取值范围为
.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想,转化与划归思想等数学思想方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为,从而得出a的取值集合;第二问在假设存在的情况下进行推理,通过构造函数,研究这个函数的单调性及最值来进行分析判断.