- 312.06 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2016年普通高等学校招生全国统一考试
数学(理)(北京卷)
本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.
第一部分(选择题共40分)
一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
(1)已知集合A=xx<2,B=-1,0,1,2,3,则AB=
(A)0, 1 (B)0, 1, 2 (C)-1, 0, 1 (D)-1, 0, 1, 2
(2)若x, y满足2x-y≤0,x+y≤3,x≥0, 则2x+y的最大值为
(A)0 (B)3 (C)4 (D)5
(3)执行如图所示的程序框图,若输入的a值为1,则输出的k值为
(A)1
(B)2
(C)3
(D)4
(4)设a,b是向量,则“|a|=|b|”是“|a+b|=|a-b|”的
(A) 充分而不必要条件 (B)必要而不充分条件
(C) 充分必要条件 (D)既不充分也不必要条件
(5)已知x, y∈R,且x>y>0,则
(A)1x-1y>0 (B)sinx-siny>0
(C)(12)x-(12)y<0 (D)lnx+lny>0
9
(6)某三棱锥的三视图如图所示,则该三棱锥的体积为
1
1
1
1
正(主)视图
侧(左)视图
俯视图
(A)16
(B)13
(C)12
(D)1
(7)将函数y=sin(2x﹣π3)图象上的点P(π4, t )向左平移s(s﹥0) 个单位长度得到点P′.
若P′位于函数y=sin2x的图象上,则
(A)t=12 ,s的最小值为π6 (B)t=32 ,s的最小值为π6
(C)t=12 ,s的最小值为π3 (D)t=32 ,s的最小值为π3
(8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,
将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过
程,直到袋中所有球都被放入盒中,则
(A)乙盒中黑球不多于丙盒中黑球 (B)乙盒中红球与丙盒中黑球一样多
(C)乙盒中红球不多于丙盒中红球 (D)乙盒中黑球与丙盒中红球一样多
第二部分(非选择题 共110分)
二、填空题共6小题,每小题5分,共30分.
(9)设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=_______________.
(10)在(1-2x)6的展开式中,x2的系数为__________________.(用数字作答)
(11)在极坐标系中,直线ρcosθ-3ρsinθ-1=0与圆ρ=2cosθ交于A, B两点,
则 AB=____________________.
(12)已知an为等差数列,Sn为其前n项和,若a1=6 ,a3+a5=0,则S6=______________.
(13)双曲线 x2a2-y2b2=1 (a>0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B
为该双曲线的焦点. 若正方形OABC的边长为2,则a=_______________.
(14)设函数fx=x3-3x, x≤a,-2x, x>a.
①若a=0,则f(x)的最大值为____________________;
②若f(x)无最大值,则实数a的取值范围是_________________.
9
三、解答题(共6小题,共80分.解答应写出文字说明,演算步骤或证明过程)
(15)(本小题13分)
在△ABC中,a3+c3=b3+2ac.
(Ⅰ)求∠B的大小;
(Ⅱ)求2cosA+cosC的最大值.
(16)(本小题13分)
A, B, C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时);
A班
6
6.5
7
7.5
8
B班
6
7
8
9
10
11
12
C班
3
4.5
6
7.5
9
10.5
12
13.5
(Ⅰ)试估计C班的学生人数;
(Ⅱ)从A班和C班抽出的学生中,各随机选取一人,A班选出的人记为甲,C班选出的人记为乙,假设
所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;
(Ⅲ)再从A, B, C三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时),
这3个新数据与表格中的数据构成的新样本的平均数记μ1 ,表格中数据的平均数记为 μ0 ,试判断
μ0和μ1的大小.(结论不要求证明)
(17)(本小题14分)
如图,在四棱锥P-ABCD中,平面PAD平面ABCD,PA⊥PD,PA=PD, AB⊥AD, AB=1, AD=2, AC=CD=5.
(Ⅰ)求证:PD⊥平面PAB;
(Ⅱ)求直线PB与平面PCD所成角的正弦值;
(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,
求AMAP的值;若不存在,说明理由.
(18)(本小题13分)
设函数fx=xea-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.
(Ⅰ)求a,b的值;
(Ⅱ)求f(x)的单调区间.
(19)(本小题14分)
9
已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为32,Aa,0,B0,b,O(0,0),△OAB的面积为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P的椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.
求证:|AN|∙|BM|为定值.
(20)(本小题13分)
设数列A:a1,a2,⋯,aN(N≥2).如果对小于n(2≤n≤N)的每个正整数k都有ak<an,则称n是数列A的一个“G时刻”.记“G(A)是数列A的所有“G时刻”组成的集合.
(Ⅰ)对数列A:-2,2,-1,1,3,写出G(A)的所有元素;
(Ⅱ)证明:若数列A中存在an使得an>a1,则G(A)≠∅;
(Ⅲ)证明:若数列A满足an-an-1≤1(n=2,3, …,N),则G(A)的元素个数不小于aN-a1.
2016年普通高等学校招生全国统一考试
数学(理)(北京卷)参考答案
一、选择题(共8小题,每小题5分,共40分)
(1)C (2)C (3)B (4)D
(5)C (6)A (7)A (8)B
二、填空题(共6小题,每小题5分,共30分)
(9) (10)
(11) (12)
(13) (14)
三、解答题(共6小题,共80分)
(15)(共13分)
解:(Ⅰ)由余弦定理及题设得.
又因为,所以.
(Ⅱ)由(Ⅰ)知.
9
,
因为,所以当时,取得最大值.
(16)(共13分)
解:(Ⅰ)由题意知,抽出的名学生中,来自班的学生有名.根据分层抽样方法,班的学生人数估计为.
(Ⅱ)设事件为“甲是现有样本中班的第个人”,,
事件为“乙是现有样本中班的第个人”,,
由题意可知,,;,.
,,.
设事件为“该周甲的锻炼时间比乙的锻炼时间长”.由题意知,
因此
(Ⅲ).
(17)(共14分)
解:(Ⅰ)因为平面平面,,
所以平面.
所以.
又因为,
所以平面.
(Ⅱ)取的中点,连结.
因为,所以.
又因为平面,平面平面,
所以平面.
因为平面,所以.
因为,所以.
如图建立空间直角坐标系.由题意得,
9
.
设平面的法向量为,则
即
令,则.
所以.
又,所以.
所以直线与平面所成角的正弦值为.
(Ⅲ)设是棱上一点,则存在使得.
因此点.
因为平面,所以平面当且仅当,
即,解得.
所以在棱上存在点使得平面,此时.
(18)(共13分)
解:(Ⅰ)因为,所以.
依题设,即
解得.
(Ⅱ)由(Ⅰ)知.
9
由即知,与同号.
令,则.
所以,当时,,在区间上单调递减;
当时,,在区间上单调递增.
故是在区间上的最小值,
从而.
综上可知,,,故的单调递增区间为.
(19)(共14分)
解:(Ⅰ)由题意得解得.
所以椭圆的方程为.
(Ⅱ)由(Ⅰ)知,,
设,则.
当时,直线的方程为.
令,得.从而.
直线的方程为.
令,得.从而.
所以
9
.
当时,,
所以.
综上,为定值.
(20)(共13分)
解:(Ⅰ)的元素为和.
(Ⅱ)因为存在使得,所以.
记,
则,且对任意正整数.
因此,从而.
(Ⅲ)当时,结论成立.
以下设.
由(Ⅱ)知.
设,记.
则.
对,记.
如果,取,则对任何.
从而且.
又因为是中的最大元素,所以.
从而对任意,,特别地,.
对.
因此.
9
所以.
因此的元素个数不小于.
9