• 404.05 KB
  • 2021-05-14 发布

各地高考真题分类汇编极坐标与绝对值不等式教师版

  • 6页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
极坐标与参数方程 ‎1.(2018年全国一·文科22)[选修4—4:坐标系与参数方程](10分)‎ 在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.‎ ‎(1)求的直角坐标方程;‎ ‎(2)若与有且仅有三个公共点,求的方程.‎ ‎22.解:(1)由,得的直角坐标方程为 ‎.‎ ‎(2)由(1)知是圆心为,半径为的圆.‎ 由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.‎ 当与只有一个公共点时,到所在直线的距离为,所以,故或.‎ 经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.‎ 当与只有一个公共点时,到所在直线的距离为,所以,故或.‎ 经检验,当时,与没有公共点;当时,与没有公共点.‎ 综上,所求的方程为.‎ ‎2.(2018年全国二·文科22) [选修4-4:坐标系与参数方程](10分)‎ 在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).‎ ‎ (1)求和的直角坐标方程;‎ ‎ (2)若曲线截直线所得线段的中点坐标为,求的斜率.‎ ‎22.解:‎ ‎(1)曲线的直角坐标方程为.‎ 当时,的直角坐标方程为,‎ 当时,的直角坐标方程为.‎ ‎(2)将的参数方程代入的直角坐标方程,整理得关于的方程 ‎.①‎ 因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.‎ 又由①得,故,于是直线的斜率.‎ ‎3.(2018年全国三·文科22) [选修4—4:坐标系与参数方程](10分)‎ 在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.学.科网 ‎(1)求的取值范围;‎ ‎(2)求中点的轨迹的参数方程.‎ ‎22.[选修4—4:坐标系与参数方程](10分)‎ 解:(1)的直角坐标方程为.‎ 当时,与交于两点.‎ 当时,记,则的方程为.与交于两点当且仅当,解得或,即或.‎ 综上,的取值范围是.‎ ‎(2)的参数方程为为参数,.‎ 设,,对应的参数分别为,,,则,且,满足.‎ 于是,.又点的坐标满足 所以点的轨迹的参数方程是为参数,.‎ ‎ ‎ ‎4.(2018年江苏)[选修4—4:坐标系与参数方程](本小题满分10分)‎ 在极坐标系中,直线l的方程为,曲线C的方程为,求直线l被曲线C截得的弦长.‎ C.[选修4—4:坐标系与参数方程]‎ 本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.‎ 解:因为曲线C的极坐标方程为,‎ 所以曲线C的圆心为(2,0),直径为4的圆.‎ 因为直线l的极坐标方程为,‎ 则直线l过A(4,0),倾斜角为,‎ 所以A为直线l与圆C的一个交点.‎ 设另一个交点为B,则∠OAB=.‎ 连结OB,因为OA为直径,从而∠OBA=,‎ 所以.‎ 因此,直线l被曲线C截得的弦长为.‎ 绝对值不等式 ‎1.(2018年全国一·文科23) [选修4—5:不等式选讲](10分)‎ 已知.‎ ‎(1)当时,求不等式的解集;‎ ‎(2)若时不等式成立,求的取值范围.‎ ‎23.解:(1)当时,,即 故不等式的解集为.‎ ‎(2)当时成立等价于当时成立.‎ 若,则当时;‎ 若,的解集为,所以,故.‎ 综上,的取值范围为.‎ ‎2.(2018年全国二·文科23) [选修4-5:不等式选讲](10分)‎ ‎ 设函数.‎ ‎ (1)当时,求不等式的解集;‎ ‎ (2)若,求的取值范围.‎ ‎23.解:‎ ‎(1)当时,‎ 可得的解集为.‎ ‎(2)等价于.‎ 而,且当时等号成立.故等价于.‎ 由可得或,所以的取值范围是.‎ ‎3.(2018年全国三·文科23) [选修4—5:不等式选讲](10分)‎ 设函数.‎ ‎(1)画出的图像;‎ ‎(2)当,,求的最小值.‎ ‎23.[选修4—5:不等式选讲](10分)‎ 解:(1)‎ 的图像如图所示.‎ ‎(2)由(1)知,的图像与轴交点的纵坐标为,且各部分所在直线斜率的最大值为,故当且仅当且时,在成立,因此的最小值为.‎ ‎4.(2018年江苏)[选修4—5:不等式选讲](本小题满分10分)‎ 若x,y,z为实数,且x+2y+2z=6,求的最小值.‎ D.[选修4—5:不等式选讲]‎ 本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分.‎ 证明:由柯西不等式,得.‎ 因为,所以,‎ 当且仅当时,不等式取等号,此时,‎ 所以的最小值为4.‎ ‎ ‎