- 261.00 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
高中物理综合题难题汇编(1)
1. (12分)如图甲所示,一粗糙斜面的倾角为37°,一物块m=5kg在斜面上,用F=50N的力沿斜面向上作用于物体,使物体沿斜面匀速上升,g取10N/kg,sin37°=0.6,cos37°=0.8,求:
(1)物块与斜面间的动摩擦因数μ;
(2)若将F改为水平向右推力,如图乙,则至少要用多大的力才能使物体沿斜面上升。(设最大静摩擦力等于滑动摩擦力)
2. (16分)如图所示,在水平方向的匀强电场中,用长为L的绝缘细线拴住一质量为m,带电荷量为q的小球,线的上端固定,开始时连线带球拉成水平,突然松开后,小球由静止开始向下摆动,当细线转过60°角时的速度恰好为零。问:
(1)电场强度E的大小为多少?
(2)A、B两点的电势差UAB为多少?
(3)当悬线与水平方向夹角为多少时,小球速度最大?最大为多少?
3. (18分)如图(甲)所示,弯曲部分AB和CD是两个半径相等的四分之一圆弧,中间的BC段是竖直的薄壁细圆管(细圆管内径略大于小球的直径),细圆管分别与上、下圆弧轨道相切连接,BC段的长度L可作伸缩调节。下圆弧轨道与地面相切,其中D、A分别是上、下圆弧轨道的最高点与最低点,整个轨道固定在竖直平面内。一小球多次以某一速度从A点水平进入轨道而从D点水平飞出。今在A、D两点各放一个压力传感器,测试小球对轨道A、D两点的压力,计算出压力差△F。改变BC间距离L,重复上述实验,最后绘得△F-L的图线如图(乙)所示。(不计一切摩擦阻力,g取10m/s2)
(1)某一次调节后D点离地高度为0.8m。小球从D点飞出,落地点与D点水平距离为2.4m,求小球过D点时速度大小。
(2)求小球的质量和弯曲圆弧轨道的半径大小。
4. (18分)如图所示,在光滑的水平地面上,质量为M=3.0kg的长木板A的左端,叠放着一个质量为m=1.0kg的小物块B(可视为质点),处于静止状态,小物块与木板之间的动摩擦因数μ=0.30。在木板A的左端正上方,用长为R=0.8m的不可伸长的轻绳将质量为m=1.0kg的小球C悬于固定点O点。现将小球C拉至上方使轻绳拉直且与水平方向成θ=30°角的位置由静止释放,到达O点的正下方时,小球C与B发生碰撞且无机械能损失,空气阻力不计,取g=10m/s2,求:
(1)小球C与小物块B碰撞前瞬间轻绳对小球的拉力;
(2)木板长度L至少为多大时,小物块才不会滑出木板。
5. (20分)如图所示,在高为h的平台上,距边缘为L处有一质量为M的静止木块(木块的尺度比L小得多),一颗质量为m的子弹以初速度v0射入木块中未穿出,木块恰好运动到平台边缘未落下,若将子弹的速度增大为原来的两倍而子弹仍未穿出,求木块的落地点距平台边缘的水平距离,设子弹打入木块的时间极短。
6. (18分)如图所示为某种弹射装置的示意图,光滑的水平导轨MN右端N处与水平传送带理想连接,传送带长度L=4.0m,皮带轮沿顺时针方向转动,带动皮带以恒定速率v=3.0m/s匀速传动。三个质量均为m=1.0kg的滑块A、B、C置于水平导轨上,开始时滑块B、C之间用细绳相连,其间有一压缩的轻弹簧,处于静止状态。滑块A以初速度v0=2.0m/s沿B、C连线方向向B运动,A与B碰撞后粘合在一起,碰撞时间极短,可认为A与B碰撞过程中滑块C的速度仍为零。因碰撞使连接B、C的细绳受扰动而突然断开,弹簧伸展,从而使C与A、B分离。滑块C脱离弹簧后以速度vC=2.0m/s滑上传送带,并从右端滑出落至地面上的P点。已知滑块C与传送带之问的动摩擦因数μ=0.20,重力加速度g取10m/s2。求:
(1)滑块c从传送带右端滑出时的速度大小;
(2)滑块B、C用细绳相连时弹簧的弹性势能Ep;
(3)若每次实验开始时弹簧的压缩情况相同,要使滑块C总能落至P点,则滑块A与滑块B碰撞前速度的最大值Vm是多少?
7. (20分)如图所示,两同心圆M、N之间的区域存在垂直于纸面的匀强磁场,圆M内、N外没有磁场,一质量为m,带电量为+q的粒子从圆心O处沿某一方向以速度飞出,已知圆M 的半径为R, 圆N的半径为,粒子重力不计。已知粒子进入磁场后沿顺针方向偏转。求:
(1)磁场的方向是垂直于纸面向里还是向外的?
(2)若粒子能再次经过圆心O,磁场的磁感应强度至少为多大?
(3)若磁场的磁感应强度保持为(2)的大小,求粒子从圆心O飞出到再次过圆心且速度与初速度方向相同所用的时间。
8. (19分)如图所示,固定于同一条竖直线上的A、B是两个带等量异种电荷的点电荷,电荷量均为Q,其中A带正电荷,B带负电荷,A、B相距为2d。MN是竖直放置的光滑绝缘细杆,另有一个穿过细杆的带电小球P,质量为m、电荷量为+q
(可视为点电荷),现将小球P从与点电荷A等高的C处由静止开始释放,小球P向下运动到距C点距离为d的D点时,速度为v。已知MN与AB之间的距离为d,静电力常量为k,重力加速度为g,若取无限远处的电势为零,试求:
(1)在A、B所形成的电场中,C的电势φC。
(2)小球P经过D点时的加速度。
(3)小球P经过与点电荷B等高的E点时的速度。
9. (20分)如图所示。一水平传送装置有轮半径为R=m的主动轮Q1和从动轮Q2及传送带等构成。两轮轴心相距8m,轮与传送带不打滑,现用此装置运送一袋面粉(可视为质点),已知这袋面粉与传送带之间的动摩擦因数为m=0.4,这袋面粉中的面粉可不断地从袋中渗出。
(1)当传送带以4m/s的速度匀速运动时,将这袋面粉由左端Q1正上方A点轻放在传送带上后,这袋面粉由A端运送到Q2正上方的B端所用的时间为多少?
(2)要想尽快将这袋面粉(初速度为零)由A端送到B端,传送带速度至少多大?
(3)由于面粉的渗漏,在运送这袋面粉的过程中会在深色传送带上留下白色的面粉痕迹,这袋面粉(初速度为零)在传送带上留下的面粉痕迹最长能有多长?此时传送带的速度应满足什么条件?
10. (18分)如图所示的电路中,电源的内阻r=2Ω,R3=8Ω,L是一个“12V,12W”的小灯泡,当调节R1使电流表读数为1.5A时,电压表的示数刚好为零,并且小灯泡L正常发光,求:
(1)电阻R2的阻值为多少?
(2)电阻R3两端的电压为多少?
(3)电源的电动势E为多少?
答案
一、计算题
1. 解析:
(1)物体受力情况如图,取平行于斜面为x轴方向,垂直斜面为y轴方向,由物体匀速运动知物体受力平衡
解得 f=20N N=40N
因为,由得
(2)物体受力情况如图,取平行于斜面为x轴方向,垂直斜面为y
轴方向。当物体匀速上行时力取最小。由平衡条件
且有
联立上三式求解得
2. 解析:
(1)小球从A→B由动能定理有:
(2)AB两点电压u=Ed,d=L(1-cos60°)
(3)当沿切线方向合力为O时,速度最大。
由动能定理得:
3. 解析:
(1)小球在竖直方向做自由落体运动,
水平方向做匀速直线运动
得:
(2)设轨道半径为r,A到D过程机械能守恒:
在A点:
在D点:
由以上三式得:
由图象纵截距得:6mg=12 得m=0.2kg
由L=0.5m时 △F=17N
代入得:r=0.4m
4. 解析:
(1)静止释放后小球做自由落体运动到a,轻绳被拉紧时与水平方向成角,再绕O点向下做圆周运动,由机械能守恒定律得
轻绳被拉紧瞬间,沿绳方向的速度变为0,沿圆周切线方向的速度为
小球由a点运动到最低点b点过程中机械能守恒
设小球在最低点受到轻绳的拉力为F,则
联立解得N
(2)小球与B碰撞过程中动量和机械能守恒,则
解得 v1=0,v2=vb=(碰撞后小球与B交换速度)
B在木板A上滑动,系统动量守恒,设B滑到木板A最右端时速度为v,则
B在木板A上滑动的过程中,系统减小的机械能转化为内能,由能量守恒定律得
联立解得
代入数据解得L=2.5m
5. 解析:
设子弹以v0射入时,木块的初速度为v1,根据动量守恒定律有
mv0=(m+M) v1 ①
根据动能定理有 μ(m+M)gL=(m+M)v12 ②
设子弹以2v0射入时,木块的初速度为v2,末速度为v3,根据动量守恒定律有
m2v0=(m+M) v2 ③
根据动能定理有 μ(m+M)gL=(m+M)v22-(m+M)v32 ④
设木块落地点距平台边缘的距离为x,由平抛运动规律有
X= v3 ⑤
由①②③④⑤联立解得 x=
6. 解析:
(1)滑块C滑上传送带后做匀加速运动,设滑块C从滑上传送带到速度达到传送带的速度v所用的时间为t,加速度大小为a,在时间t内滑块C的位移为x。
根据牛顿第二定律和运动学公式 μmg=ma
v=vC+at
解得 x=1.25m<L
即滑块C在传送带上先加速,达到传送带的速度v后随传送带匀速运动,并从右端滑出,则滑块C从传道带右端滑出时的速度为v=3.0m/s。
(2)设A、B碰撞后的速度为v1,A、B与C分离时的速度为v2,由动量守恒定律
mv0=2mv1
2 mv1=2mv2+mvC
由能量守恒规律
解得EP=1.0J
(3)在题设条件下,若滑块A在碰撞前速度有最大值,则碰撞后滑块C的速度有最大值,它减速运动到传送带右端时,速度应当恰好等于传递带的速度v。
设A与B碰撞后的速度为,分离后A与B的速度为,滑块C的速度为,由能量守恒规律和动量守恒定律 mvm=2mv1′
2mv1′=mvC′+2mv2′
由能量守恒规律
由运动学公式
解得: vm=7.1m/s
说明:其他方法解答正确也给分
7. 解析:
(1)由左手定则得:磁场方向垂直于纸面向外。
(2)粒子能再次经过圆心O,磁场的磁感应强度最小时,粒子运动轨迹与圆N相切,轨迹如图。设粒子在磁场中做匀速圆周运动的半径为r。由几何知识可知:
设磁场的磁感应强度最小值为B,由洛仑兹力公式及匀速圆周运动规律得: ②
联立①②解得: ③
(3)由几何知识可知:
粒子从C点进入磁场到从D离开磁场,粒子转过的角度为
即个圆周 ⑤
由几何知识可知粒子从圆心O飞出到第一次过圆心且速度与初速度方向相同所运动的轨迹如图所示,运动的时间为:
联立①⑥⑦解得: ⑧
8. 解析:
(1)由等量异种电荷形成的电场特点可知,D点的电势与无限远处电势相等,即D点电势为零。小球P由C运动到D的过程,由动能定理得:
(2)小球P经过D点时受力如图:由库仑定律得:
由牛顿第二定律得:
(3)小球P由D运动到E的过程,由动能定理得:
由等量异种电荷形成的电场特点可知: ⑧
联立①⑦⑧解得: ⑨
9. 解析:
(1)面粉袋与传送带相对运动过程中所受摩擦力f=µmg
根据牛顿第二定律:
若传送带的速度v=4m/s,则面粉袋加速运动的时间 t1=
在t1时间内的位移
其后以v=4m/s速度匀速运动
解得:t2=1.5s 所以运动总时间:t=t1+t2=2.5s
(2)要想时间最短,面粉袋应一直向B端匀加速运动
由
此时传送带的速度
(3)传送带速度越大,“痕迹”越长。
当面粉的痕迹布满整条传送带时,痕迹达到最长。
即痕迹长
在面粉袋由A端运动到B端的时间内痕迹达到最长,传送带运动的距离
则传送带的速度
二、选择题
10. 解析:
(1)由于电压表读数为零,说明R2两端电压与灯泡两端电压一样,为正常发光时的额定值U2=12V,又因为灯正常发光,所以通过灯的电流为:;
电流表测得的电流I是通过灯与R2的电流之和,也是电路中的干路电流,所以通过R2的电流为I2=1.5-1=0.5A,所以。
(2)流过R3的电流与流过灯的电流一样大,也为1A,所以 U3=I1R3=8V
(3)内电压为=Ir=3V,电源的电动势为E= +=12V+8V+3V=23V。
高中物理综合题难题汇编(2)
1. (20分)如图所示。一水平传送装置有轮半径为R=m的主动轮Q1和从动轮Q2及传送带等构成。两轮轴心相距8m,轮与传送带不打滑,现用此装置运送一袋面粉(可视为质点),已知这袋面粉与传送带之间的动摩擦因数为m=0.4,这袋面粉中的面粉可不断地从袋中渗出。
(1)当传送带以4m/s的速度匀速运动时,将这袋面粉由左端Q1正上方A点轻放在传送带上后,这袋面粉由A端运送到Q2正上方的B端所用的时间为多少?
(2)要想尽快将这袋面粉(初速度为零)由A端送到B端,传送带速度至少多大?
(3)由于面粉的渗漏,在运送这袋面粉的过程中会在深色传送带上留下白色的面粉痕迹,这袋面粉(初速度为零)在传送带上留下的面粉痕迹最长能有多长?此时传送带的速度应满足什么条件?
4. (16分)两个质量分别为M1和M2的劈A和B,高度相同,放在光滑的水平面上,A和B相向的侧面都是相同的光滑的曲面,曲面下端与水平面相切,如图所示,一个质量为m的物块位于劈A的曲面上,距水平面的高度为h。物块从静止开始滑下,然又滑上劈B的曲面。试求物块在B上能够达到的最大高度是多少?
6. (18分)某司机驾驶一辆卡车正以一定速度在平直公路上匀速行驶,经过某个标志为40 km/h的限速牌时,突然发现离它25.5m处停着一辆正在维修的小轿车,该司机采取紧急刹车措施,使卡车做匀减速直线运动,结果刚好与小轿车发生碰撞,在处理事故时,交警用课本介绍的测定反应时间的方法对该司机进行了测试,发现他握住木尺时,木尺已经自由下落了20cm。已知这种卡车急刹车时产生的加速度大小为5m/s2,通过计算帮助交警分析卡车是否超速?(g取10m/s2)
7. (22分)物体A的质量M=1kg,静止在光滑水平面上的平板车B的质量为m=0.5kg、长L=2m。某时刻A以V0=4m/s向右的初速度滑上木板B的上表面,在A滑上B的同时,给B施加一个水平向右的拉力。忽略物体A的大小,已知A与B之间的动摩擦因数µ=0.2,取重力加速度g=10m/s2。试求:
(1)若F=15N,物体A在小车上运动时相对小车滑行的最大距离;
(2)如果要使A不至于从B上滑落,拉力F大小应满足的条件。
9. (20分)A、B两列火车,在同一轨道上同向行驶,A车在前,其速度,B车在后,速度,因大雾能见度很低,B车在距A车75m时才发现前方有A车,这时B车立即刹车,但B车要经过180m才能够停止。问:
(1)B车刹车时的加速度是多大?
(2)若B车刹车时A车仍按原速前进,两车是否相撞?若会相撞,将在B车刹车后何时?若不会相撞,则两车最近距离是多少?
(3)若B车在刹车的同时发出信号,A车司机经过收到信号后加速前进,则A车的加速度至少多大才能避免相撞?
10. (18分)如图所示,光滑水平面AB与竖直面的半圆形导轨在B点衔接,导轨半径R,一个质量为m的静止物块在A处压缩弹簧,把物块释放,在弹力的作用下获得一个向右的速度,当它经过B点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半圆周运动到达C点,求:
(1)弹簧对物块的弹力做的功;
(2)物块从B至C克服阻力所做的功;
(3)物块离开C点后落回水平面时动能的大小。
答案
一、计算题
1. 解析:
(1)面粉袋与传送带相对运动过程中所受摩擦力f=µmg
根据牛顿第二定律:
若传送带的速度v=4m/s,则面粉袋加速运动的时间 t1=
在t1时间内的位移
其后以v=4m/s速度匀速运动
解得:t2=1.5s 所以运动总时间:t=t1+t2=2.5s
(2)要想时间最短,面粉袋应一直向B端匀加速运动
由
此时传送带的速度
(3)传送带速度越大,“痕迹”越长。
当面粉的痕迹布满整条传送带时,痕迹达到最长。
即痕迹长
在面粉袋由A端运动到B端的时间内痕迹达到最长,传送带运动的距离
则传送带的速度
4. 解析:
设物块到达劈A的低端时,物块和A的的速度大小分别为v和V,由机械能守恒和动量守恒得
设物块在劈B上达到的最大高度为,此时物块和B的共同速度大小为,由机械能守恒和动量守恒得
联立①②③④式得 ⑤
6. 解析:
选取卡车前进的方向为正方向,则S总=25.5m,a=-5m/s2,设汽车经过限速牌时速度为V,卡车司机的反应时间为t,测定反应时间时,木尺做自由落体运动。
由 h=gt2 (3分)
得 t=s=0.2 s (2分)
反应时间内卡车做匀速运动,则卡车这段时间的位移: S1=Vt (3分)
卡车紧急刹车后停下 Vt=0,则滑行的距离: S2= (3分)
另 S总=S1+S2=25.5 (3分)
由以上各式可求得V=15m/s=54km/h (2分)
因为V> =40 km/h,显然该卡车超速。 (2分)
7. 解析:
(1)物体A滑上木板B以后,作匀减速运动
有µmg =maA 得aA=µg=2 m/s2
木板B作加速运动,有F+µmg=MaB,得:aB=14 m/s2
两者速度相同时,有V0-aAt=aBt,得:t=0.25s
A滑行距离:SA=V0t-aAt2=m
B滑行距离:SB=aBt2=m
最大距离:△s= SA- SB=0.5m
(2)物体A不滑落的临界条件是A到达B的右端时,A、B具有共同的速度v1,则:
又:
由以上两式,可得:aB=6m/s2
再代入数据得: F= m2aB—µm1g=1N
若F<1N,则A滑到B的右端时,速度仍大于B的速度,于是将从B上滑落,所以F必须大于等于1N。
当F较大时,在A到达B的右端之前,就与B具有相同的速度,之后,A必须相对B静止,才不会从B的左端滑落。即有:
F=(m+m)a, µm1g =m1a
所以:F=3N
若F大于3N,A就会相对B向左滑下。
综上:力F应满足的条件是: 1N≤F≤3
9. 解析:
(1)B车刹车至停下过程中,,,S =180m
由得:
,(2分) =
故B车刹车时加速度大小为2.5m/s2,方向与运动方向相反。(2分)
(2)假设始终不相撞,设经时间t两车速度相等,则对B车有:
,解得: (2分)
此时B车的位移: (2分)
A车的位移: (1分)
因,故两车会相撞。 (2分)
设经时间t两车相撞,则有:
(2分)
代入数据解得:,(舍去)
故经时间6s两车相撞。 (2分)
(3)设A车的加;速度为aA时两车不相撞:
两车速度相等时:,即: ①(2分)
此时B车的位移:,即: ②(1分)
A车的位移: ③ (1分)
要不相撞,两车位移关系满足: ④ (1分)
由①②③④联立解得: (1分)
10. 解析: