- 233.50 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第41练 坐标系与参数方程
[题型分析·高考展望] 高考主要考查平面直角坐标系中的伸缩变换、直线和圆的极坐标方程;参数方程与普通方程的互化,常见曲线的参数方程及参数方程的简单应用.以极坐标、参数方程与普通方程的互化为主要考查形式,同时考查直线与曲线位置关系等解析几何知识.
体验高考
1.(2016·课标全国甲)在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.
(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(2)直线l的参数方程是(t为参数),l与C交于A、B两点,|AB|=,求l的斜率.(可以利用直线参数t的几何意义求解,即取原点为特殊点得)
解 (1)由x=ρcos θ,y=ρsin θ可得圆C的极坐标方程ρ2+12ρcos θ+11=0.
(2)在(1)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R).
设A,B所对应的极径分别为ρ1,ρ2,将l的极坐标方程代入C的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.
|AB|=|ρ1-ρ2|==.
由|AB|=得cos2α=,tan α=±.所以l的斜率为或-.
2.(2015·江苏)已知圆C的极坐标方程为ρ2+2ρ·sin-4=0,求圆C的半径.
解 以极坐标系的极点为平面直角坐标系的原点O,以极轴为x轴的正半轴,建立直角坐标系xOy.圆C的极坐标方程为ρ2+2ρ-4=0,
化简,得ρ2+2ρsin θ-2ρcos θ-4=0.则圆C的直角坐标方程为x2+y2-2x+2y-4=0,
即(x-1)2+(y+1)2=6,所以圆C的半径为.
高考必会题型
题型一 极坐标与直角坐标的互化
把直角坐标系的原点作为极点,x轴正半轴作为极轴,且在两坐标系中取相同的长度单位.如图,设M是平面内的任意一点,它的直角坐标、极坐标分别为(x,y)和(ρ,θ),则
例1 在极坐标系中,曲线C1:ρ(cos θ+sin θ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上,求a的值.
解 ρ(cos θ+sin θ)=1,
即ρcos θ+ρsin θ=1对应的普通方程为x+y-1=0,
ρ=a(a>0)对应的普通方程为x2+y2=a2.在x+y-1=0中,令y=0,得x=.
将代入x2+y2=a2得a=.
点评 (1)在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.
(2)在与曲线的方程进行互化时,一定要注意变量的范围,要注意转化的等价性.
变式训练1 在以O为极点的极坐标系中,直线l与曲线C的极坐标方程分别是ρcos(θ+)=3和ρsin2θ=8cos θ,直线l与曲线C交于点A、B,求线段AB的长.
解 ∵ρcos(θ+)=ρcos θcos -ρsin θsin =ρcos θ-ρsin θ=3,
∴直线l对应的直角坐标方程为x-y=6.又∵ρsin2θ=8cos θ,
∴ρ2sin2θ=8ρcos θ.
∴曲线C对应的直角坐标方程是y2=8x.
解方程组得或
所以A(2,-4),B(18,12),所以AB==16.
即线段AB的长为16.
也可以直接两方程联立,利用公式。或取一个特殊点,利用直线参数方程的几何意义。
题型二 参数方程与普通方程的互化
1.直线的参数方程
过定点M(x0,y0),倾斜角为α的直线l的参数方程为(t为参数).
2.圆的参数方程
圆心在点M(x0,y0),半径为r的圆的参数方程为(θ为参数,0≤θ≤2π).
3.圆锥曲线的参数方程
(1)椭圆+=1的参数方程为(θ为参数).
(2)抛物线y2=2px(p>0)的参数方程为(t为参数).
例2 (2015·福建)在平面直角坐标系xOy中,圆C的参数方程为(t为参数).在极坐标系(与平面直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,直线l的方程为ρsin=m(m∈R).
(1)求圆C的普通方程及直线l的直角坐标方程;
(2)设圆心C到直线l的距离等于2,求m的值.
解 (1)消去参数t,得到圆C的普通方程为(x-1)2+(y+2)2=9.
由ρsin=m,得ρsin θ-ρcos θ-m=0.所以直线l的直角坐标方程为x-y+m=0.
(2)依题意,圆心C到直线l的距离等于2,
即=2,解得m=-3±2.
点评 (1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有代入消参法,加减消参法,平方消参法等.
(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解、漏解,若x、y有范围限制,要标出x、y的取值范围.
变式训练2 已知直线l的参数方程为(t为参数),P是椭圆+y2=1上的任意一点,求点P到直线l的距离的最大值.
解 由于直线l的参数方程为(t为参数),故直线l的普通方程为x+2y=0.因为P为椭圆+y2=1上的任意一点,故可设P(2cos θ,sin θ),其中θ∈R.
因此点P到直线l的距离是d==.
所以当θ=kπ+,k∈Z时,d取得最大值.
题型三 极坐标、参数方程的综合应用
解决与圆、圆锥曲线的参数方程有关的综合问题时,要注意普通方程与参数方程的互化公式,主要是通过互化解决与圆、圆锥曲线上动点有关的问题,如最值、范围等.
例3 (2015·课标全国Ⅱ)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sin θ,曲线C3:ρ=2cos θ.
(1)求C2与C3交点的直角坐标;
(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.
解 (1)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2-2x=0.
联立解得或所以C2与C3交点的直角坐标为(0,0)和.
(2)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),
其中0≤α<π.因此A的极坐标为(2sin α,α),B的极坐标为(2cos α,α).
所以|AB|=|2sin α-2cos α|=4.当α=时,|AB|取得最大值,最大值为4.
点评 (1)利用参数方程解决问题,要理解参数的几何意义.
(2)解决直线、圆和圆锥曲线的有关问题,将极坐标方程化为直角坐标方程或将参数方程化为普通方程,有助于对方程所表示的曲线的认识,从而达到化陌生为熟悉的目的,这是转化与化归思想的应用.
变式训练3 (2015·陕西)在直角坐标系xOy中,直线l的参数方程为(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sin θ.
(1)写出⊙C的直角坐标方程;
(2)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.
解 (1)由ρ=2sin θ,得ρ2=2ρsin θ,
从而有x2+y2=2y,所以x2+(y-)2=3.
(2)设P,又C(0,),则|PC|==,
故当t=0时,|PC|取得最小值,此时,P点的直角坐标为(3,0).
高考题型精练
1.已知圆的极坐标方程为ρ=4cos θ,圆心为C,点P的极坐标为(4,),求CP的长.
解 由ρ=4cos θ得ρ2=4ρcos θ,即x2+y2=4x,即(x-2)2+y2=4,∴圆心C(2,0),又由点P的极坐标为(4,)可得点P的直角坐标为(2,2),∴CP==2.
2.(2015·安徽改编)在极坐标系中,求圆ρ=8sin θ上的点到直线θ=(ρ∈R)距离的最大值.
解 圆ρ=8sin θ化为直角坐标方程为x2+y2-8y=0,即x2+(y-4)2=16,直线θ=(ρ∈R)化为直角坐标方程为y=x,结合图形知圆上的点到直线的最大距离可转化为圆心到直线的距离再加上半径.
圆心(0,4)到直线y=x的距离为=2,又圆的半径r=4,所以圆上的点到直线的最大距离为6.
3.在极坐标系中,已知三点M(2,-)、N(2,0)、P(2,).
(1)将M、N、P三点的极坐标化为直角坐标;
(2)判断M、N、P三点是否在一条直线上.
解 (1)由公式得M的直角坐标为(1,-);
N的直角坐标为(2,0);P的直角坐标为(3,).
(2)∵kMN==,kNP==.∴kMN=kNP,∴M、N、P三点在一条直线上.
4.(2015·重庆改编)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2cos 2θ=4,求直线l与曲线C的交点的极坐标.
解 直线l的直角坐标方程为y=x+2,由ρ2cos 2θ=4得ρ2(cos2θ-sin2θ)=4,直角坐标方程为x2-y2=4,把y=x+2代入双曲线方程解得x=-2,因此交点为(-2,0),其极坐标为(2,π).
5.以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cos θ,求直线l被圆C截得的弦长.
解 直线l的参数方程(t为参数)化为直角坐标方程是y=x-4,圆C的极坐标方程ρ=4cos θ
化为直角坐标方程是x2+y2-4x=0.圆C的圆心(2,0)到直线x-y-4=0的距离为d==.又圆C的半径r=2,因此直线l被圆C截得的弦长为2=2.
6.(2016·江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数).设直线l与椭圆C相交于A,B两点,求线段AB的长.
解 直线l的方程化为普通方程为x-y-=0,椭圆C的方程化为普通方程为x2+=1,
联立方程组得解得或
∴A(1,0),B.故AB==.
也可以直接两方程联立,利用公式。
7.(2015·湖南)已知直线l:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cos θ.
(1)将曲线C的极坐标方程化为直角坐标方程;
(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|·|MB|的值.
解 (1)ρ=2cos θ等价于ρ2=2ρcos θ.①
将ρ2=x2+y2,ρcos θ=x代入①即得曲线C的直角坐标方程为x2+y2-2x=0.②
(2)将 代入②式,得t2+5t+18=0.
设这个方程的两个实根分别为t1,t2,则由参数t的几何意义即知,|MA|·|MB|=|t1t2|=18.
8.已知直线l的参数方程是(t为参数),圆C的极坐标方程为ρ=4cos.
(1)将圆C的极坐标方程化为直角坐标方程;
(2)若圆上有且仅有三个点到直线l的距离为,求实数a的值.
解 (1)由ρ=4cos,得ρ=4cos θ-4sin θ.
即ρ2=4ρcos θ-4ρsin θ.由
得x2+y2-4x+4y=0,得(x-2)2+(y+2)2=8.
所以圆C的直角坐标方程为(x-2)2+(y+2)2=8.
(2)直线l的参数方程可化为y=2x+a,
则由圆的半径为2知,圆心(2,-2)到直线y=2x+a的距离恰好为.
所以=,解得a=-6±.
9.[2018全国I]在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求的直角坐标方程;
(2)若与有且仅有三个公共点,求的方程.
解:(1)由,得的直角坐标方程为.
(2)由(1)知是圆心为,半径为的圆.由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.
当与只有一个公共点时,到所在直线的距离为,所以,故或.
经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.
当与只有一个公共点时,到所在直线的距离为,所以,故或.
经检验,当时,与没有公共点;当时,与没有公共点.
综上,所求的方程为.
10.[2017全国I]在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.
(1)若a=−1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为,求a.
解:(1)曲线的普通方程为.
当时,直线的普通方程为.
由解得或.从而与的交点坐标为,.
(2)直线的普通方程为,故上的点到的距离为
.
当时,的最大值为.由题设得,所以;
当时,的最大值为.由题设得,所以.
综上,或.、