- 110.50 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第2讲 合情推理与演绎推理
基础巩固题组
(建议用时:40分钟)
一、填空题
1.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理________.
①结论正确;②大前提不正确;③小前提不正确;④全不正确.
解析 f(x)=sin(x2+1)不是正弦函数而是复合函数,所以小前提不正确.
答案 ③
2.(2014·西安五校联考)观察下式:1=12;2+3+4=32;3+4+5+6+7=52;4+5+6+7+8+9+10=72,…,则得出第n个式子的结论:________.
解析 各等式的左边是第n个自然数到第3n-2个连续自然数的和,右边是中间奇数的平方,故得出结论:n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.
答案 n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2
3.若等差数列{an}的首项为a1,公差为d,前n项的和为Sn,则数列为等差数列,且通项为=a1+(n-1)·,类似地,请完成下列命题:若各项均为正数的等比数列{bn}的首项为b1,公比为q,前n项的积为Tn,则________.
答案 数列{}为等比数列,且通项为=b1()n-1
4.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=________.
解析 由已知得偶函数的导函数为奇函数,故g(-x)=-g(x).
答案 -g(x)
5.(2012·江西卷改编)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于________.
解析 从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123.
答案 123
6.(2014·长春调研)类比“两角和与差的正弦公式”的形式,对于给定的两个函数:S(x)=ax-a-x,C(x)=ax+a-x,其中a>0,且a≠1,下面正确的运算公式是________.
①S(x+y)=S(x)C(y)+C(x)S(y);
②S(x-y)=S(x)C(y)-C(x)S(y);
③2S(x+y)=S(x)C(y)+C(x)S(y);
④2S(x-y)=S(x)C(y)-C(x)S(y).
解析 经验证易知①②错误.依题意,注意到2S(x+y)=2(ax+y-a-x-y),S(x)C(y)+C(x)S(y)=2(ax+y-a-x-y),因此有2S(x+y)=S(x)C(y)+C(x)S(y);同理有2S(x-y)=S(x)C(y)-C(x)S(y).
答案 ③④
7.由代数式的乘法法则类比推导向量的数量积的运算法则:
①“mn=nm”类比得到“a·b=b·a”;
②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;
③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;
④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;
⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;
⑥“=”类比得到“=”.
以上式子中,类比得到的结论正确的是________.
解析 ①②正确;③④⑤⑥错误.
答案 ①②
8.(2014·南京一模)给出下列等式:=2cos ,=2cos ,=2cos ,请从中归纳出第n个等式:=________.
答案 2cos
二、解答题
9.给出下面的数表序列:
其中表n(n=1,2,3,…)有n行,第1行的n个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.
写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明).
解 表4为 1 3 5 7
4 8 12
12 20
32
它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.
将这一结论推广到表n(n≥3),即表n(n≥3)各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列.
10.f(x)=,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳猜想一般性结论,并给出证明.
解 f(0)+f(1)=+
=+=+=,
同理可得:f(-1)+f(2)=,f(-2)+f(3)=.
由此猜想f(x)+f(1-x)=.
证明:f(x)+f(1-x)=+
=+=+
==.
能力提升题组
(建议用时:25分钟)
一、填空题
1.(2012·江西卷改编)观察下列事实:|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,…,则|x|+|y|=20的不同整数解(x,y)的个数为________.
解析 由|x|+|y|=1的不同整数解的个数为4,|x|+|y|=2的不同整数解的个数为8,|x|+|y|=3的不同整数解的个数为12,归纳推理得|x|+|y|=n的不同整数解的个数为4n,故|x|+|y|=20的不同整数解的个数为80.
答案 80
2.观察下列各式9-1=8,16-4=12,25-9=16,36-16=20,…,这些等式反映了自然数间的某种规律,设n表示自然数,用关于n的等式表示为________.
解析 9-1=(1+2)2-12=4(1+1),16-4=(2+2)2-22=4(2+1),25-9=(3+2)2-32=4(4+1),36-16=(4+2)2-42=4×(5+1),…,一般地,有(n+2)2-n2=4(n+1)(n∈N*).
答案 (n+2)2-n2=4(n+1)(n∈N*)
3.(2013·湖北卷)在平面直角坐标系中,若点P(x,y)的坐标x,y均为整数,则称点P为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.
(1)图中格点四边形DEFG对应的S,N,L分别是________;
(2)已知格点多边形的面积可表示为S=aN+bL+c,其中a,b,c为常数.若某格点多边形对应的N=71,L=18,则S=________(用数值作答).
解析 (1)四边形DEFG是一个直角梯形,观察图形可知:S=(+2)××=3,N=1,L=6.
(2)由(1)知,S四边形DEFG=a+6b+c=3.
S△ABC=4b+c=1.
在平面直角坐标系中,取一“田”字型四边形,构成边长为2的正方形,该正方形中S=4,N=1,L=8.则S=a+8b+c=4.联立解得a=1,b=.c=-1.
∴S=N+L-1,∴若某格点多边形对应的N=71,L=18,则S=71+×18-1=79.
答案 (1)3,1,6 (2)79
二、解答题
4.(2012·福建卷)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
①sin213°+cos217°-sin 13°cos 17°;
②sin215°+cos215°-sin 15°cos 15°;
③sin218°+cos212°-sin 18°cos 12°;
④sin2(-18°)+cos248°-sin(-18°)cos 48°;
⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.
(1)试从上述五个式子中选择一个,求出这个常数;
(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.
解 (1)选择②式,计算如下:
sin215°+cos215°-sin 15°cos 15°
=1-sin 30°
=1-
=.
(2)三角恒等式为sin2α+cos2(30°-α)-sin αcos(30°-α)=.
证明如下:
sin2α+cos2(30°-α)-sin αcos(30°-α)=sin2α+(cos 30°cos α+sin 30°sin α)2-sin α·(cos 30°cos α+sin 30°sin α)=sin2α+cos2α+sin αcos α+sin2α-sin αcos α-sin2α=sin2α+cos2α=.