- 411.50 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2008年普通高等学校招生全国统一考试(重庆卷)
数学试题卷(文史类)
数学试题卷(文史类)共5页。满分150分。考试时间120分钟。
注意事项:
1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,将试题卷和答题卡一并交回。
参考公式:
如果事件A、B互斥,那么 P(A+B)=P(A)+P(B).
如果事件A、B相互独立,那么P(A·B)=P(A)·P(B).
如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率
Pn(K)=kmPk(1-P)n-k
一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个备选项中,只有一项是符合题目要求的.
(1)已知{an}为等差数列,a2+a8=12,则a5等于
(A)4 (B)5 (C)6 (D)7
(2)设x是实数,则“x>0”是“|x|>0”的
(A)充分而不必要条件 (B)必要而不充分条件
(C)充要条件 (D)既不充分也不必要条件
(3)曲线C:(为参数)的普通方程为
(A)(x-1)2+(y+1)2=1 (B) (x+1)2+(y+1)2=1
(C) (x-1)2+(y-1)2=1 (D) (x-1)2+(y-1)2=1
(4)若点P分有向线段所成的比为-,则点B分有向线段所成的比是
(A)- (B)- (C) (D)3
(5)某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是
(A)简单随机抽样法 (B)抽签法
(C)随机数表法 (D)分层抽样法
(6)函数y=10x2-1 (0<x≤1=的反函数是
(A) (B)(x>)
(C) (<x≤ (D) (<x≤
(7)函数f(x)=的最大值为
(A) (B) (C) (D)1
(8)若双曲线的左焦点在抛物线y2=2px的准线上,则p的值为
(A)2 (B)3 (C)4 (D)4
(9)从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为
(A) (B) (C) (D)
(10)若(x+)n的展开式中前三项的系数成等差数,则展开式中x4项的系数为
(A)6 (B)7 (C)8 (D)9
(11)如题(11)图,模块①-⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成.现从模块①-⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体.则下列选择方案中,能够完成任务的为
(A)模块①,②,⑤ (B)模块①,③,⑤
(C)模块②,④,⑥ (D)模块③,④,⑤
(12)函数f(x)=(0≤x≤2)的值域是
(A)[-] (B)[-]
(C)[-] (D)[-]
二、填空题:本大题共4小题,每小题4分,共16分.把答案填写在答题卡相应位置上.
(13)已知集合,则
.
(14)若则= .
(15)已知圆C: (a为实数)上任意一点关于直线l:x-y+2=0
的对称点都在圆C上,则a= .
(16)某人有3种颜色的灯泡(每种颜色的灯泡足够多),要在如题(16)图所示的6个点A、B、C、A1、B1、C1上各安装一个灯泡,要求同一条线段两端的灯泡不同色,则不同的安装方法共有 种(用数字作答).
三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.
(17)(本小题满13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)
设△ABC的内角A,B,C的对边分别为a,b,c.已知,求:
(Ⅰ)A的大小;
(Ⅱ)的值.
(18)(本小题满分13分,(Ⅰ)小问8分,(Ⅱ)小问5分.)
在每道单项选择题给出的4个备选答案中,只有一个是正确的.若对4道选择题中的每一道都任意选定一个答案,求这4道题中:
(Ⅰ)恰有两道题答对的概率;
(Ⅱ)至少答对一道题的概率.
(19)(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分.)
设函数若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求:
(Ⅰ)a的值;
(Ⅱ)函数f(x)的单调区间.
(20)(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分.)
如图(20)图, 为平面,AB=5,A,B在棱l上的射影分别为A′,B′,AA′=3,BB′=2.若二面角的大小为,求:
(Ⅰ)点B到平面的距离;
(Ⅱ)异面直线l与AB所成的角(用反三角函数表示).
(21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)
如题(21)图,M(-2,0)和N(2,0)是平面上的两点,动点P满足:
(Ⅰ)求点P的轨迹方程;
(Ⅱ)设d为点P到直线l: 的距离,若,求的值.
(22)(本小题满分12分,(Ⅰ)小问6分.(Ⅱ)小问6分)
设各项均为正数的数列{an}满足.
(Ⅰ)若求a3,a4,并猜想a2008的值(不需证明);
(Ⅱ)若对n≥2恒成立,求a2的值.
绝密★启用前
2008年普通高等学校招生全国统一考试(重庆卷)
数学试题(文史类)答案
一、选择题:每小题5分,满分60分.
(1)C (2)A (3)C (4)A (5)D (6)D
(7)B (8)C (9)B (10)B (11)A (12)C
二、填空题:每小题4分,满分16分.
(13) |2 , 3| (14) -23 (15) -2 (16) 12
三、解答题:满分74分.
(17)(本小题13分)
解:(Ⅰ)由余弦定理,
(Ⅱ)
(18)(本小题13分)
解:视“选择每道题的答案”为一次试验,则这是4次独立重复试验,且每次试验中“选择正确”这一事件发生的概率为.
由独立重复试验的概率计算公式得:
(Ⅰ)恰有两道题答对的概率为
(Ⅱ)解法一:至少有一道题答对的概率为
解法二:至少有一道题答对的概率为
(19)(本小题12分)
解:(Ⅰ)因
所以
即当
因斜率最小的切线与平行,即该切线的斜率为-12,
所以
解得
(Ⅱ)由(Ⅰ)知
(20)(本小题12分)
解:(1)如答(20)图,过点B′C∥A′A且使B′C=A′A.过点B作BD⊥CB′,交CB′的延长线于D.
由已知AA′⊥l,可得DB′⊥l,又已知BB′⊥l,故l⊥平面BB′D,得BD⊥l又因BD⊥CB′,从而BD⊥平面α,BD之长即为点B到平面α的距离.
因B′C⊥l且BB′⊥l,故∠BB′C为二面角α-l-β的平面角.由题意,∠BB′C=
.因此在Rt△BB′D中,BB′=2,∠BB′D=π-∠BB′C=,BD=BB′·sinBB′D
=.
(Ⅱ)连接AC、BC.因B′C∥A′A,B′C=A′A,AA′⊥l,知A′ACB′为矩形,故AC∥l.所以∠BAC或其补角为异面直线l与AB所成的角.
在△BB′C中,B′B=2,B′C=3,∠BB′C=,则由余弦定理,
BC=.
因BD平面,且DCCA,由三策划线定理知ACBC.
故在△ABC中,∠BCA=,sinBAC=.
因此,异面直线l与AB所成的角为arcsin
(21)(本小题12分)
解:(I)由双曲线的定义,点P的轨迹是以M、N为焦点,实轴长2a=2的双曲线.
因此半焦距c=2,实半轴a=1,从而虚半轴b=,
所以双曲线的方程为x2-=1.
(II)解法一:
由(I)由双曲线的定义,点P的轨迹是以M、N为焦点,实轴长2a=2的双曲线.
因此半焦距e=2,实半轴a=1,从而虚半轴b=.
R所以双曲线的方程为x2-=1.
(II)解法一:
由(I)及答(21)图,易知|PN|1,因|PM|=2|PN|2, ①
知|PM|>|PN|,故P为双曲线右支上的点,所以|PM|=|PN|+2. ②
将②代入①,得2||PN|2-|PN|-2=0,解得|PN|=,所以
|PN|=.
因为双曲线的离心率e==2,直线l:x=是双曲线的右准线,故=e=2,
所以d=|PN|,因此
解法:
设P(x,y),因|PN|1知
|PM|=2|PN|22|PN|>|PN|,
故P在双曲线右支上,所以x1.
由双曲线方程有y2=3x2-3.
因此
从而由|PM|=2|PN|2得
2x+1=2(4x2-4x+1),即8x2-10x+1=0.
所以x=(舍去x=).
有|PM|=2x+1=
d=x-=.
故
(22)(本小题12分)
解:(I)因a1=2,a2=2-2,故
由此有a1=2(-2)0, a2=2(-2)4, a3=2(-2)2, a4=2(-2)3,
从而猜想an的通项为
,
所以a2xn=.
(Ⅱ)令xn=log2an.则a2=2x2,故只需求x2的值。
设Sn表示x2的前n项和,则a1a2…an=,由2≤a1a2…an<4得
≤Sn=x1+x2+…+xn<2(n≥2).
因上式对n=2成立,可得≤x1+x2,又由a1=2,得x1=1,故x2≥.
由于a1=2,(n∈N*),得(n∈N*),即
,
因此数列{xn+1+2xn}是首项为x2+2,公比为的等比数列,故
xn+1+2xn=(x2+2) (n∈N*).
将上式对n求和得
Sn+1-x1+2Sn=(x2+2)(1++…+)=(x2+2)(2-)(n≥2).
因Sn<2,Sn+1<2(n≥2)且x1=1,故
(x2+2)(2-)<5(n≥2).
因此2x2-1<(n≥2).
下证x2≤,若淆,假设x2>,则由上式知,不等式
2n-1<
对n≥2恒成立,但这是不可能的,因此x2≤.
又x2≥,故z2=,所以a2=2=.