- 2.33 MB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题十七 圆锥曲线与方程
1.(15北京理科)已知双曲线的一条渐近线为,则 .
【答案】
考点:双曲线的几何性质
2.(15北京理科)已知椭圆:的离心率为,点和点都在椭圆上,直线交轴于点.
(Ⅰ)求椭圆的方程,并求点的坐标(用,表示);
(Ⅱ)设为原点,点与点关于轴对称,直线交轴于点.问:轴上是否存在点,使得?若存在,求点的坐标;若不存在,说明理由.
【答案】
【解析】
试题分析:椭圆:的离心率为,点在椭圆上,利用条件列方程组,解出待定系数,写出椭圆方程;由点和点,写出PA直线方程,令求出x值,写出直线与x轴交点坐标;由点,写出直线的方程,令求出x值,写出点N的坐标,设,求出和,利用二者相等,求出,则存在点使得.
试题解析:(Ⅰ)由于椭圆:过点且离心率为,
,,椭圆的方程为.
,直线的方程为:,令,;
考点:1.求椭圆方程;2.求直线方程及与坐标轴的交点;3.存在性问题.
3.(15北京文科)已知是双曲线()的一个焦点,则 .
【答案】
【解析】
试题分析:由题意知,,所以.
考点:双曲线的焦点.
4.(15北京文科)已知椭圆,过点且不过点的直线与椭圆交于,两点,直线与直线交于点.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若垂直于轴,求直线的斜率;
(Ⅲ)试判断直线与直线的位置关系,并说明理由.
【答案】(1);(2)1;(3)直线BM与直线DE平行.
【解析】
试题分析:本题主要考查椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先将椭圆方程化为标准方程,得到a,b,c的值,再利用计算离心率;第二问,由直线AB的特殊位置,设出A,B点坐标,设出直线AE的方程,由于直线AE与x=3相交于M点,所以得到M点坐标,利用点B、点M的坐标,求直线BM的斜率;第三问,分直线AB的斜率存在和不存在两种情况进行讨论,第一种情况,直接分析即可得出结论,第二种情况,先设出直线AB和直线AE的方程,将椭圆方程与直线AB的方程联立,消参,得到和,代入到中,只需计算出等于0即可证明,即两直线平行.
试题解析:(Ⅰ)椭圆C的标准方程为.
所以,,.
所以椭圆C的离心率.
(Ⅱ)因为AB过点且垂直于x轴,所以可设,.
直线AE的方程为.
令,得.
所以直线BM的斜率.
(Ⅲ)直线BM与直线DE平行.证明如下:
当直线AB的斜率不存在时,由(Ⅱ)可知.
又因为直线DE的斜率,所以.
当直线AB的斜率存在时,设其方程为.
设,,则直线AE的方程为.
令,得点.
由,得.
所以,.
考点:椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系.
5.(15年广东理科)已知双曲线:的离心率,且其右焦点,则双曲线的方程为
A. B. C. D.
【答案】.
【解析】因为所求双曲线的右焦点为且离心率为,所以,,
所以所求双曲线方程为,故选.
【考点定位】本题考查双曲线的标准方程及其简单基本性质,属于容易题.
6.(15年广东理科)已知过原点的动直线与圆相交于不同的两点,.
(1)求圆的圆心坐标;
(2)求线段的中点的轨迹的方程;
(3)是否存在实数,使得直线与曲线只有一个交点:若存在,求出的取值范围;若不存在,说明理由.
【答案】(1);(2);(3).
【解析】(1)由得,
∴ 圆的圆心坐标为;
(2)设,则
∵ 点为弦中点即,
∴ 即,
∴ 线段的中点的轨迹的方程为;
(3)由(2)知点的轨迹是以为圆心为半径的部分圆弧(如下图所示,不包括两端点),且,,又直线:过定点,
L
D
x
y
O
C
E
F
当直线与圆相切时,由得,又,结合上图可知当时,直线:与曲线只有一个交点.
【考点定位】本题考查圆的标准方程、轨迹方程、直线斜率等知识与数形结合思想等应用,属于中高档题.
6.(15年广东文科)已知椭圆()的左焦点为,则( )
A. B. C. D.
【答案】C
【解析】
试题分析:由题意得:,因为,所以,故选C.
考点:椭圆的简单几何性质.
7.(15年安徽理科)设椭圆E的方程为,点O为坐标原点,点A的坐标为,点B的坐标为,点M在线段AB上,满足,直线OM的斜率为.
(I)求E的离心率e;
(II)设点C的坐标为,N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.
8.(15年安徽文科)下列双曲线中,渐近线方程为的是( )
(A) (B)
(C) (D)
【答案】A
【解析】
试题分析:由双曲线的渐进线的公式可行选项A的渐进线方程为,故选A.
考点:渐近线方程.
9.(15年安徽文科)设椭圆E的方程为点O为坐标原点,点A的坐标为,点B的坐标为(0,b),点M在线段AB上,满足直线OM的斜率为。[学优高考网]
(1)求E的离心率e;
(2)设点C的坐标为(0,-b),N为线段AC的中点,证明:MNAB。
【答案】(1) (2)详见解析.
∴=
(Ⅱ)由题意可知N点的坐标为()
∴
∴
∴MN⊥AB
考点:1椭圆的离心率;2.直线与椭圆的位置关系.
10.(15年福建理科)若双曲线 的左、右焦点分别为,点在双曲线上,且,则 等于( )
A.11 B.9 C.5 D.3
【答案】B
【解析】
试题分析:由双曲线定义得,即,解得,故选B.
考点:双曲线的标准方程和定义.
11.(15年福建理科)已知椭圆E:过点,且离心率为.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设直线交椭圆E于A,B两点,判断点G与以线段AB为直径的圆的位置关系,并说明理由.
【答案】(Ⅰ);(Ⅱ) G在以AB为直径的圆外.
在圆上.
试题解析:解法一:(Ⅰ)由已知得
解得
所以椭圆E的方程为.
故
所以,故G在以AB为直径的圆外.
解法二:(Ⅰ)同解法一.
(Ⅱ)设点,则
由所以
从而
所以不共线,所以为锐角.
故点G在以AB为直径的圆外.
考点:1、椭圆的标准方程;2、直线和椭圆的位置关系;3、点和圆的位置关系.
12.(15年福建文科)已知椭圆的右焦点为.短轴的一个端点为,直线交椭圆于两点.若,点到直线的距离不小于,则椭圆的离心率的取值范围是( )
A. B. C. D.
【答案】A
考点:1、椭圆的定义和简单几何性质;2、点到直线距离公式.
13.(15年福建文科)已知点为抛物线的焦点,点在抛物线上,且
.
(Ⅰ)求抛物线的方程;
(Ⅱ)已知点,延长交抛物线于点,证明:以点为圆心且与直线相切的圆,必与直线相切.
【答案】(Ⅰ);(Ⅱ)详见解析.
【解析】
试题分析:(Ⅰ)利用抛物线定义,将抛物线上的点到焦点距离和到准线距离相互转化.本题由可得,可求的值,进而确定抛物线方程;(Ⅱ)欲证明以点为圆心且与直线相切的圆,必与直线相切.可证明点到直线和直线的距离相等(此时需确定两条直线方程);也可以证明,可转化为证明两条直线的斜率互为相反数.
试题解析:解法一:(I)由抛物线的定义得.
因为,即,解得,所以抛物线的方程为.
(II)因为点在抛物线上,
所以,由抛物线的对称性,不妨设.
由,可得直线的方程为.
由,得,
解得或,从而.
又,
所以,,
所以,从而,这表明点到直线,的距离相等,
故以为圆心且与直线相切的圆必与直线相切.
解法二:(I)同解法一.
(II)设以点为圆心且与直线相切的圆的半径为.
因为点在抛物线上,
所以,由抛物线的对称性,不妨设.
由,可得直线的方程为.
由,得,
解得或,从而.
又,故直线的方程为,
从而.
又直线的方程为,
所以点到直线的距离.
这表明以点为圆心且与直线相切的圆必与直线相切.
考点:1、抛物线标准方程;2、直线和圆的位置关系.
14.(15年新课标1理科)一个圆经过椭圆的三个顶点,且圆心在x轴上,则该圆的标准方程为 。
【答案】
【解析】设圆心为(,0),则半径为,则,解得,故圆的方程为.
15.(15年新课标2理科)过三点A(1,3),B(4,2),C(1,-7)的圆交于y轴于M、N两点,则=
(A)2 (B)8 (C)4 (D)10
【答案】C
16.(15年新课标2理科)已知A,B为双曲线E的左,右顶点,点M在E上,∆ABM为等腰三角形,且顶角为120°,则E的离心率为
(A)√5 (B)2 (C)√3 (D)√2
【答案】D
17.(15年新课标2理科)已知椭圆C:,直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M。
(1)证明:直线OM的斜率与l的斜率的乘积为定值;
(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由。
18.(15年新课标2文科)已知双曲线过点,且渐近线方程为,则该双曲线的标准方程为 .
【答案】
考点:双曲线几何性质
19.(15年陕西理科)若抛物线的准线经过双曲线的一个焦点,则p= .
【答案】
考点:1、抛物线的简单几何性质;2、双曲线的简单几何性质.
20.(15年陕西理科)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表
示),则原始的最大流量与当前最大流量的比值为 .
【答案】
【解析】
试题分析:建立空间直角坐标系,如图所示:
原始的最大流量是,设抛物线的方程为(),因为该抛物线过点,所以,解得,所以,即,所以当前最大流量是,故原始的最大流量与当前最大流量的比值是,所以答案应填:.
考点:1、定积分;2、抛物线的方程;3、定积分的几何意义.
21.(15年陕西理科)已知椭圆()的半焦距为,原点到经过两点
,的直线的距离为.
(I)求椭圆的离心率;
(II)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方
程.
【答案】(I);(II).
【解析】
试题分析:(I)先写过点,的直线方程,再计算原点到该直线的距离,进而可得椭圆的离心率;(II)先由(I)知椭圆的方程,设的方程,联立,消去,可得和的值,进而可得,再利用可得的值,进而可得椭圆的方程.
试题解析:(I)过点(c,0),(0,b)的直线方程为,
则原点O到直线的距离,
由,得,解得离心率.
(II)解法一:由(I)知,椭圆E的方程为. (1)
依题意,圆心M(-2,1)是线段AB的中点,且.
易知,AB不与x轴垂直,设其直线方程为,代入(1)得
设则
由,得解得.
从而.
于是.
由,得,解得.
故椭圆E的方程为.
解法二:由(I)知,椭圆E的方程为. (2)
依题意,点A,B关于圆心M(-2,1)对称,且.
设则,,
两式相减并结合得.
易知,AB不与x轴垂直,则,所以AB的斜率
因此AB直线方程为,代入(2)得
所以,.
于是.
由,得,解得.
故椭圆E的方程为.
考点:1、直线方程;2、点到直线的距离公式;3、椭圆的简单几何性质;4、椭圆的方程;5、圆的方程;6、直线与圆的位置关系;7、直线与圆锥曲线的位置.
22.(15年陕西文科)已知抛物线的准线经过点,则抛物线焦点坐标为( )
A. B. C. D.
【答案】
【解析】
试题分析:由抛物线得准线,因为准线经过点,所以,
所以抛物线焦点坐标为,故答案选
考点:抛物线方程.
23.(15年陕西文科)如图,椭圆经过点,且离心率为.
(I)求椭圆的方程;
(II)经过点,且斜率为的直线与椭圆交于不同两点(均异于点),证明:直线与的斜率之和为2.
【答案】(I) ; (II)证明略,详见解析.
【解析】
试题分析:(I)由题意知,由,解得,继而得椭圆的方程为;
(II) 设,由题设知,直线的方程为,代入
,化简得,则,
由已知, 从而直线与的斜率之和
化简得.
试题解析:(I)由题意知,
综合,解得,
所以,椭圆的方程为.
(II)由题设知,直线的方程为,代入,得
,
由已知,设,
则,
从而直线与的斜率之和
.
考点:1.椭圆的标准方程;2.圆锥曲线的定值问题.
24.(15年天津理科)已知双曲线 的一条渐近线过点 ,且双曲线的一个焦点在抛物线 的准线上,则双曲线的方程为
(A) (B)(C)(D)
【答案】D
考点:1.双曲线的标准方程及几何性质;2.抛物线的标准方程及几何性质.
25.(15年天津理科)已知椭圆的左焦点为,离心率为,点M在椭圆上且位于第一象限,直线FM被圆截得的线段的长为c,.
(I)求直线FM的斜率;
(II)求椭圆的方程;
(III)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围.
【答案】(I) ; (II) ;(III) .
【解析】
试题分析:(I) 由椭圆知识先求出的关系,设直线直线的方程为,求出圆心到直线的距离,由勾股定理可求斜率的值; (II)由(I)设椭圆方程为,直线与椭圆方程联立,求出点的坐标,由可求出,从而可求椭圆方程.(III)设出直线:,与椭圆方程联立,求得,求出的范围,即可求直线的斜率的取值范围.
试题解析:(I) 由已知有,又由,可得,,
设直线的斜率为,则直线的方程为,由已知有
,解得.
(II)由(I)得椭圆方程为,直线的方程为,两个方程联立,消去,整理得
,解得或,因为点在第一象限,可得的坐标为,由,解得,所以椭圆方程为
(III)设点的坐标为,直线的斜率为,得,即,与椭圆方程联立,消去,整理得,又由已知,得,解得
或,
设直线的斜率为,得,即,与椭圆方程联立,整理可得.
①当时,有,因此,于是,得
②当时,有,因此,于是,得
综上,直线的斜率的取值范围是
考点:1.椭圆的标准方程和几何性质;2.直线和圆的位置关系;3.一元二次不等式.
26.(15年天津文科)已知双曲线的一个焦点为,且双曲线的渐近线与圆相切,则双曲线的方程为( )
(A) (B) (C) (D)
【答案】D
考点:圆与双曲线的性质.
27.(15年湖南理科)
28.(15年山东理科)平面直角坐标系中,双曲线的渐近线与抛物线交于点,若的垂心为的焦点,则的离心率为 .
解析:的渐近线为,则
的焦点,则,即
29.(15年山东理科)平面直角坐标系中,已知椭圆的离心率为,左、右焦点分别是,以为圆心,以3为半径的圆与以为圆心,以1为半径的圆相交,交点在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆,P为椭圆C上的任意一点,过点P的直线交椭圆E于A,B两点,射线PO交椭圆E于点Q.
(ⅰ)求的值;(ⅱ)求面积最大值.
解析:(Ⅰ)由椭圆的离心率为可知,而则,左、右焦点分别是,
圆:圆:由两圆相交可得,即,交点,在椭圆C上,则,
整理得,解得(舍去)
故椭圆C的方程为.
(Ⅱ)(ⅰ)椭圆E的方程为,
设点,满足,射线,
代入可得点,于是.
(ⅱ)点到直线距离等于原点O到直线距离的3倍:
,得,整理得
,当且仅当等号成立.
而直线与椭圆C:有交点P,则
有解,即有解,
其判别式,即,则上述不成立,等号不成立,
设,则在为增函数,
于是当时,故面积最大值为12.
30.(15年江苏) 在平面直角坐标系中,为双曲线右支上的一个动点。若点到直线的距离大于c恒成立,则是实数c的最大值为 [来源:学#科#网Z#X#X#K]
【答案】
【解析】
试题分析:设,因为直线平行于渐近线,所以c的最大值为直线与渐近线之间距离,为
考点:双曲线渐近线,恒成立转化
31.(15年江苏)如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且右焦点F到左
准线l的距离为3.
(1)求椭圆的标准方程;
(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.
【答案】(1)(2)或.
(2)当轴时,,又,不合题意.
当与轴不垂直时,设直线的方程为,,,
将的方程代入椭圆方程,得,
则,的坐标为,且
.
若,则线段的垂直平分线为轴,与左准线平行,不合题意.
从而,故直线的方程为,
则点的坐标为,从而.
因为,所以,解得.
此时直线方程为或.
考点:椭圆方程,直线与椭圆位置关系