- 450.50 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
导数题型归纳
首先,关于二次函数的不等式恒成立的主要解法:
1、分离变量;2变更主元;3根分布;4判别式法
5、二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系
(2)端点处和顶点是最值所在
其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。
最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础
一、基础题型:函数的单调区间、极值、最值;不等式恒成立;
1、此类问题提倡按以下三个步骤进行解决:
第一步:令得到两个根;
第二步:画两图或列表;
第三步:由图表可知;
其中不等式恒成立问题的实质是函数的最值问题,
2、常见处理方法有三种:
第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)
第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);
例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数,
(1)若在区间上为“凸函数”,求m的取值范围;
(2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值.
例2:设函数
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)若对任意的不等式恒成立,求a的取值范围.
第三种:构造函数求最值
题型特征:恒成立恒成立;从而转化为第一、二种题型
例3:已知函数图象上一点处的切线斜率为,
(Ⅰ)求的值;(Ⅱ)当时,求的值域;
(Ⅲ)当时,不等式恒成立,求实数t的取值范围。
思路1:要使恒成立,只需,即分离变量
思路2:二次函数区间最值
二、题型一:已知函数在某个区间上的单调性求参数的范围
解法1:转化为在给定区间上恒成立, 回归基础题型
解法2:利用子区间;首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;
做题时一定要看清楚“在(m,n)上是减函数”与“函数的单调减区间是(a,b)”,要弄清楚两句话的区别:前者是后者的子集
例4:已知,函数.
(Ⅰ)如果函数是偶函数,求的极大值和极小值;
(Ⅱ)如果函数是上的单调函数,求的取值范围.
例5、已知函数
(I)求的单调区间;(II)若在[0,1]上单调递增,求a的取值范围。子集思想
三、题型二:根的个数问题
题1函数f(x)与g(x)(或与x轴)的交点======即方程根的个数问题
解题步骤
第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;
第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;
第三步:解不等式(组)即可;
例6、已知函数,,且在区间上为增函数.
(1)求实数的取值范围;(2)若函数与的图象有三个不同的交点,求实数的取值范围.
例7、已知函数
(1)若是的极值点且的图像过原点,求的极值;
(2)若,在(1)的条件下,是否存在实数,使得函数的图像与函数的图像恒有含的三个不同交点?若存在,求出实数的取值范围;否则说明理由。
题2:切线的条数问题====以切点为未知数的方程的根的个数
例7、已知函数在点处取得极小值-4,使其导数的的取值范围为,求:(1)的解析式;(2)若过点可作曲线的三条切线,求实数的取值范围.
题3:已知在给定区间上的极值点个数则有导函数=0的根的个数
解法:根分布或判别式法
例8 、
例9、已知函数,(1)求的单调区间;(2)令=x4+f(x)(x∈R)有且仅有3个极值点,求a的取值范围.
其它例题:
1、(最值问题与主元变更法的例子).已知定义在上的函数在区间上的最大值是5,最小值是-11.
(Ⅰ)求函数的解析式;(Ⅱ)若时,恒成立,求实数的取值范围.
2、(根分布与线性规划例子)已知函数
(Ⅰ) 若函数在时有极值且在函数图象上的点处的切线与直线平行, 求的解析式;
(Ⅱ) 当在取得极大值且在取得极小值时, 设点所在平面区域为S, 经过原点的直线L将S分为面积比为1:3的两部分, 求直线L的方程.
3、(根的个数问题)已知函数的图象如图所示。
(Ⅰ)求的值;
(Ⅱ)若函数的图象在点处的切线方程为,求函数f ( x )的解析式;
(Ⅲ)若方程有三个不同的根,求实数a的取值范围。
4、(根的个数问题)已知函数
(1)若函数在处取得极值,且,求的值及的单调区间;
(2)若,讨论曲线与的交点个数.
5、(简单切线问题)已知函数图象上斜率为3的两条切线间的距离为,函数.
(Ⅰ) 若函数在处有极值,求的解析式;
(Ⅱ) 若函数在区间上为增函数,且在区间上都成立,求实数的取值范围.