- 361.50 KB
- 2021-05-14 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
常见弹簧类问题分析
高考要求
轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视.
弹簧类命题突破要点
1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.
2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:Wk=-(kx22-kx12),弹力的功等于弹性势能增量的负值.弹性势能的公式Ep=kx2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.
下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析。
一、与物体平衡相关的弹簧问题
1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )
A.m1g/k1 B.m2g/k2 C.m1g/k2 D.m2g/k2
此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而ml刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g/k2=mlg/
k2.
此题若求ml移动的距离又当如何求解?
参考答案:C
2.S1和S2表示劲度系数分别为k1,和k2两根轻质弹簧,k1>k2;A和B表示质量分别为mA和mB的两个小物块,mA>mB,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使( ).
A.S1在上,A在上
B.S1在上,B在上
C.S2在上,A在上
D.S2在上,B在上
参考答案:D
3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m,它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k1(大弹簧)和k2(小弹簧)分别为多少?
(参考答案k1=100N/m k2=200N/m)
4.(2001年上海高考)如图所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.现将L2线剪断,求剪断瞬时物体的加速度.
(1)下面是某同学对该题的一种解法:
解 设L1线上拉力为Tl,L2线上拉力为T2,重力为mg,物体在三力作用下保持平衡
Tlcosθ=mg,Tlsinθ=T2,T2=mgtanθ,
剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.
因为mgtanθ=ma,所以加速度a=g tanθ,方向在T2反方向.你认为这个结果正确吗?清对该解法作出评价并说明理由.
解答:错.因为L2被剪断的瞬间,L1上的张力大小发生了变化.此瞬间
T2=mgcosθ, a=gsinθ
(2)若将图中的细线Ll改为长度相同、质量不计的轻弹簧,其他条件不变,求解的步骤和结果与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.
解答:对,因为L2被剪断的瞬间,弹簧L1的长度未及发生变化,T1大小和方向都不变.
二、与动力学相关的弹簧问题
5.如图所示,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为M的木板,木板下面再挂一个质量为m的物体.当剪掉m后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长,(不考虑剪断后m、M间的相互作用)则M与m之间的关系必定为 ( )
A.M>m B.M=m C.ML
C.s